5,249 research outputs found

    Extreme Decoherence and Quantum Chaos

    Full text link
    We study the ultimate limits to the decoherence rate associated with dephasing processes. Fluctuating chaotic quantum systems are shown to exhibit extreme decoherence, with a rate that scales exponentially with the particle number, thus exceeding the polynomial dependence of systems with fluctuating kk-body interactions. Our findings suggest the use of quantum chaotic systems as a natural test-bed for spontaneous wave function collapse models. We further discuss the implications on the decoherence of AdS/CFT black holes resulting from the unitarity loss associated with energy dephasing.Comment: 6+10 pp, 2+3 figures; published versio

    MFQE 2.0: A New Approach for Multi-frame Quality Enhancement on Compressed Video

    Full text link
    The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames. This task is Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we firstly develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Also, PQF quality is enhanced in the same way. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code is available at https://github.com/RyanXingQL/MFQEv2.0.git.Comment: Accepted to TPAMI in September, 2019. v6 updates: correct units in Fig. 11; correct author info; delete bio photos. arXiv admin note: text overlap with arXiv:1803.0468

    Relaxed Majorization-Minimization for Non-smooth and Non-convex Optimization

    Full text link
    We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the directional derivatives of the objective function and its surrogate function vanishes when the number of iterations approaches infinity, which is a very weak condition. So our method can use a surrogate function that directly approximates the non-smooth objective function. In comparison, all the existing MM methods construct the surrogate function by approximating the smooth component of the objective function. We apply our relaxed MM methods to the robust matrix factorization (RMF) problem with different regularizations, where our locally majorant algorithm shows advantages over the state-of-the-art approaches for RMF. This is the first algorithm for RMF ensuring, without extra assumptions, that any limit point of the iterates is a stationary point.Comment: AAAI1
    corecore