4 research outputs found

    基于实测齿面误差的齿轮副动力学特性分析

    No full text
    齿面误差是齿轮产生振动和噪声的最主要影响因素,为了研究齿面误差对齿轮系统影响规律,针对实测齿面误差,通过接触分析,计算了考虑齿廓偏差、径向跳动和齿距偏差的齿轮系统静态传递误差。在借鉴前人对齿轮传动系统研究的基础上,建立了包含时变啮合刚度、齿侧间隙、啮合阻尼和静态传递误差的一对单自由度圆柱齿轮副的动力学微分方程。通过数值仿真的方法分析齿轮系统的动态特性,研究结果表明,根据实测齿面误差计算得到的静态传递误差成分更丰富,齿廓偏差在低转速下对齿轮系统的影响较大,径向跳动和齿距偏差在高速时对齿轮系统的影响较大

    nimo双金属催化剂的甲烷化性能与耐硫稳定性

    No full text
    采用沉淀-浸渍法合成一系列Ni-Mo基双金属催化剂,在固定床反应器中对其催化活性和耐硫性能进行评价,并辅以不同的表征手段阐释其作用机理。实验结果表明,以MCM-41分子筛为载体的催化剂活性和稳定性优于以NaY、γ-Al_2O_3和拟薄水铝石(PB)为载体的催化剂;反应前后催化剂的表征结果则说明Ni-Mo分子间适宜的相互作用是决定催化剂性能的关键。MCM-41载体催化剂中适宜的Ni-Mo分子间相互作用使得此催化剂中活性组分与载体间的相互作用适中,还原后的活性金属Ni能够均匀分散在载体表面,从而提高了催化剂的耐硫稳定性和抗积炭能力。不同Ni-Mo比同样会影响Ni-Mo分子间的相互作用,通过考察确定20Ni-10Mo/MCM-41的活性和稳定性最优

    nimo双金属催化剂的甲烷化性能与耐硫稳定性

    No full text
    采用沉淀-浸渍法合成一系列Ni-Mo基双金属催化剂,在固定床反应器中对其催化活性和耐硫性能进行评价,并辅以不同的表征手段阐释其作用机理。实验结果表明,以MCM-41分子筛为载体的催化剂活性和稳定性优于以NaY、γ-Al_2O_3和拟薄水铝石(PB)为载体的催化剂;反应前后催化剂的表征结果则说明Ni-Mo分子间适宜的相互作用是决定催化剂性能的关键。MCM-41载体催化剂中适宜的Ni-Mo分子间相互作用使得此催化剂中活性组分与载体间的相互作用适中,还原后的活性金属Ni能够均匀分散在载体表面,从而提高了催化剂的耐硫稳定性和抗积炭能力。不同Ni-Mo比同样会影响Ni-Mo分子间的相互作用,通过考察确定20Ni-10Mo/MCM-41的活性和稳定性最优

    Ni-Mo双金属催化剂的甲烷化性能与耐硫稳定性

    No full text
    采用沉淀-浸渍法合成一系列Ni-Mo基双金属催化剂,在固定床反应器中对其催化活性和耐硫性能进行评价,并辅以不同的表征手段阐释其作用机理。实验结果表明,以MCM-41分子筛为载体的催化剂活性和稳定性优于以Na Y、&gamma;-Al_2O_3和拟薄水铝石(PB)为载体的催化剂;反应前后催化剂的表征结果则说明Ni-Mo分子间适宜的相互作用是决定催化剂性能的关键。MCM-41载体催化剂中适宜的Ni-Mo分子间相互作用使得此催化剂中活性组分与载体间的相互作用适中,还原后的活性金属Ni能够均匀分散在载体表面,从而提高了催化剂的耐硫稳定性和抗积炭能力。不同Ni-Mo比同样会影响Ni-Mo分子间的相互作用,通过考察确定20Ni-10Mo/MCM-41的活性和稳定性最优。</p
    corecore