18 research outputs found

    水土保持法第32、33條及山坡地保育利用條例第35條罰則缺失之探討及其改進之研究--以林肯大郡等4個災變案為例

    No full text
    水土保持法係於1994年7月25日經立法公告,實乃我國水土保持產官學研之行政與各工作團隊人員歷二十餘年努力最終之成效,且本法之訂定可視為水土保持工作執行者最重要之法源。其立法之宗旨及目的乃在保育台灣的水土資源、涵養水源並減免水土災害發生,期使台灣居民能安居樂業之重要律法。 惟立法之時,本法及其源生法山坡地保育利用條例因涉及超個人法益(社會法益及國家法益),故具有最重要且異於一般行政法規之刑罰規範。亦即本法除行政權之權限外(如建築法、都市計畫法等,雖有刑罰罰則之規章,但刑度最高僅一年以下有期徒刑,且執行時多由其他較重之法例吸收,故多以罰金處分,幾可視為行政法規),因罰則(水土保持法第32、33條,山坡地保育利用條例第35條)之訂定,司法警察權亦可依法介入。然因水土保持工作者鎮日接觸工程、環境保育之專業領域,甚少涉獵法務,致不黯工程與法律介面之整合,且本法訂定刑責時,明顯直接引用山坡地保育利用條例之罰則規定,造成該法執行刑責時,如司法人員於認定「法定要件」之「...致生水土流失...」時常感疑惑,以致常喪失於第一時間內取締違法、彌平災變之重要黃金時刻。故本欲以本法補水土保持工程規範及擅自墾殖、開發之不足,反造成執法者窒礙難行。 本研究旨在以法學刑法基本理論、學說之論述,藉由探討林肯大郡等四個災變案發生之因素,證實本法之缺失及該等災變發生之因素所在,進而建議該管機關儘速修訂本法,以收本法為所有開發、建管、建築、土木等法令,最終完整之效,且得以迅速有效遏止山坡地濫墾、違法開發等禍遺子孫之惡行。Soil and Water Conservation Law was legislated and announced on May 25-th 1994, and this outcome took twenty-five years by the soil and water conservation relative professional continuities. Besides establishing the law is the most important resource of law for the soil and water conservation workers, because the purpose and object of this law is to protect the Soil and Water resources of Taiwan, and also is the fundamental work for this island which twenty-three million people have been living in Taiwan. It is involved beyond individual benefit (Society benefit and Nation benefit) when legislated this law, therefore it especially and have priority to possess the penalty standard of the administrative legislation. In other words except the administration authority (Ex: Because there is no regulations for penalty in architecture Laws and it's then classified into administrative laws) of this law. Because of the penalty (Soil and Water Conservation Law, clause 32 and 33rd) established, Jurisdiction could be intervened by operation of this law. Since the soil and water conservation workers are devoted to the civil engineering and Environmental protection mainly, consequently read and study law affairs cursorily. They couldn't integrate the engineering and the law properly, accordingly they copy the regulation directly from Mountain sloping field conservation laws, clause 35th. It cause jurisdiction worker to feel doubtful to identify “…causing soil and water erosion… (Statutory article) ” When they execute the punishment. Due to this, they also couldn't clamp down on illegality and prevent the catastrophe at the real time. This law is originally established to be a standard of soil and water conservation construction even more would make up the deficiency when opening the ground and enforcing a ban, but lead to difficulty for the jurisdiction worker contrarily. This study concern on expounding the jurisprudence theory, and explore the cause of Lincoln Building concurrently. I want to investigate the deficiency of this law by the occurred damage of Lincoln Building as an example and suggest the relative institute to revise this law accordingly. Therefore could completely fulfill the law onto develop and build and construct the slope land, in the mean time could stop over-cultivating and illegal constructing as well.目 錄 摘要-------------------------------------------------------------------------I Abstract---------------------------------------------------------------------I 目錄------------------------------------------------------------------------III 表目錄-------------------------------------------------------------------- IV 壹、前言--------------------------------------------------------------------1 貳、研究方法--------------------------------------------------------------3 參、水土保持法及山坡地保育利用條例重要內涵分析-----------7 3.1保護法益------------------------------------------------------------7 3.2法律結構------------------------------------------------------------7 3.3微罪分析----------------------------------------------------------13 肆、水土保持法第32、33條及山坡地保育利用條例第35條罰則之缺失及目前執行狀況---------------------------------------18 4.1主管機關----------------------------------------------------------18 4.2警察權-------------------------------------------------------------18 4.3執行瓶頸----------------------------------------------------------18 4.4目前執行內容----------------------------------------------------19 伍、案例分析------------------------------------------------------------20 5.1林肯大郡災變----------------------------------------------------20 5.2北投德行東路災變案-------------------------------------------31 5.3五股鄉灰渣場加勁土堤潰堤災變----------------------------35 5.4三芝鄉白沙灣墓園納骨塔土石流災變----------------------47 5.5案例共同因素分析----------------------------------------------53 陸、結論與建議---------------------------------------------------------55 參考文獻------------------------------------------------------------------6

    Interpretation of Monitoring Information and Efficiency Evaluation of Subsurface Drainages in Jiu-Fen Landslide

    No full text
    九份聚落座落新北市瑞芳區,以古建築及山景聞名是北台灣著名的景點,日據時期因金礦而崛起,因開發甚早致無水土保持之考量,迄無完善的集排水系統;故豪雨時,地表逕流無法有效排出,雨水大量入滲,使得地下水水位迅速升高,並造成九份聚落處於地滑狀態(九份地滑區)。由於地層不斷滑動及地面裂縫持續擴張,建築及擋土設施因而產生傾斜或傾倒破壞。為解決豪雨期間地下水流竄導致的地滑問題,新北市政府於1997年開始,採用各種地球物理探測法,進行水文地質調查及地下水流探測,分析求得豪雨期間地下水水脈分布及主要流路,並據此於2009年完成5組集水井設置(深度為25 m~30 m、直徑為3.5 m),排除深層地下水。 本研究主要根據地下水水流探測成果及傾斜管側向位移監測結果,探討集水井地下排水系統之規劃設計原理,與其功能性運作對邊坡穩定之有效性。由監測結果得知,地滑區在設置集水井後,土層體積含水量明顯降低,地下水水位下降達15 m深,傾斜管之最大位移率降幅達82%。 此外本研究更蒐整九份地滑地監測、鑽探、岩土力學試驗及地質調查等資料,以探討地下排水工法對邊坡穩定性之影響,並採用涵蓋W1、 W2 、W3 、W4及 W5集水井之A1、B邊坡剖面,進行地下排水工法施作前、後降雨入滲及穩定數值分析。同時,將分析結果與現場監測之地下水變化及地層位移資料進行比對,以驗證數值程序及輸入參數之有效性。 首先為評估地下排水工法之功效,採用瑞芳氣象站之降雨資料,以決定25、50及100年不同重現期距之48小時設計雨型分析,並用以進行地滑地降雨入滲及坡度穩地分析。採用2009年莫拉克(Morakot)颱風降雨資料,進行工法之孔隙水壓、邊坡穩定安全係數、體積含水量等有效性評估。進而分析九份地滑地A1剖面3個潛在滑動面,及B剖面1個潛在滑動面,降雨期間FS值變化;結果顯示,在降雨期間,施作地下排水工法之FS值與未施作者比較,較不受降雨影響且下降極微小。由此可確認地下排水工法具有加速排除入滲雨水及減緩地下水水位上升之功能,並使邊坡維持在相對穩定狀態。 地下排水工法設計參數研究結果顯示:橫向集水管打設位置在中等深度排水效果最佳、安全係數最高;集水管打設長愈長,愈能有效穩定邊坡。最後建議管理基準值,以模擬分析探討邊坡位移量與安全係數間之關係,透過迴歸分析得一迴歸式,此迴歸式趨勢線可作為防災應變警戒參考。The Chiu-Fen community comes within the jurisdiction of Rui-Fang District, New Taipei City and was well-known for its gold mining in Japanese occupation period. Chiu-Fen was declining afterwards due to the exhaust of gold mine resources while nowadays Chiu-Fen becomes a famous sightseeing and tourism spot of north Taiwan because of its unique old style architectures and graceful hillside scenery. Due to lack of soil and water conservation planning in the early development, a perfect and improve run-off collection and drainage system was absent in Chiu-Fen. As a consequence, the run-off was unable to be drained off effectively during torrential rainfall and causes a large quantity of infiltration of rainwater. The increase of groundwater level frequently imposes Chiu-Fen situating at a critical condition of ground movements. Yearly the residential buildings and retaining structures on landslide were tilted and overturned by continuous sliding of soil strata and unceasing expansion of tension crack on ground surface. To overcome the ground sliding problem caused by groundwater rise, New Taipei City Government initiated an extensive field investigation and monitoring on hydraulic structure and groundwater flow in 1997. Using various geophysical exploration methods, the distribution pattern and major flow paths of groundwater flow during heavy rainfall can be verified. Eventually, there totally 5 drainage shafts with an average depth of 25 m~30 m and a diameter of 3.5 m were installed till 2009 and a large scale of subsurface drainage was performed to drain off the deep groundwater of Chiu-Fen Landslide. This study investigates the fundamental of planning and design of subsurface drainage system and the effects of the functional operation of the system on landslide. The monitoring results indicate that after the installation of 5 drainage shafts the volumetric water content of soil strata was largely reduced, the groundwater level dropped 15m in ordinary time and the maximum displacement rate of inclinometers decreased about 82%. To investigate the effect of subsurface drainage on the slope stability, this study collects the monitoring data, boring logs, soil and rock laboratory experiments and field tests of Chiu-Fen landslide for a comprehensive stability analyses. The A1、 B profile of Chiu-Fen landslide which covers the subsurface drainage works of W1、 W2 、W3 、W4 and W5 vertical shaft with horizontal drains was selected for a series of rainfall seepage and stability analyses. Comparing the groundwater variation and ground movement of simulation with those of measurement during rainfall with one can verify the validity of numerical procedures and material model parameters. In addition, to evaluate the effectiveness of subsurface drainage works in Chiu-Fen landslide, the rainfall records of Ruei-Fang meteorological station were adopted to determine the 48 hrs design rainfall pattern of return periods 25, 50 and 100 years. The design rainfall patterns were eventually used for a series of rainfall seepage and slope stability analyses. On the other hand, the rainfall data of Morakot typhoon in 2009 was used to evaluate the effectiveness of subsurface drainage. According to the parametric studies on the design parameters of underground drainage works, the inclination spacing and length of horizontal drain. In conclusions, the horizontal drain is drilled middle and longer within colluviums, may possess a better drain function and higher capability of improving the slope stability. In summary, the relationship between slope displacement and safety factor (FS) is analyzed by the model analysis. According to the regression formula, the regression line of the formula can be applied the reference value of disaster prevention alert. Keywords: Chiu-Fen landslide, geophysical explorations, subsurface drainage works, horizontal drains, drainage well, factor of safety (FS).謝誌 i 摘 要 ii ABSTRACT iii 目錄 v 表目錄 xi 圖目錄 xiv 第一章 前言 1 1.1研究動機 1 1.2研究目的 1 1.3研究範圍 2 第二章 文獻回顧 3 2.1地滑 3 2.2誘發地滑之降雨分析 7 2.2.1頻率分析 7 2.2.2 設計雨型 8 2.3前期降雨對地滑之影響 8 2.4 降雨入滲行為 10 2.4.1 降雨對地下水位之影響 10 2.4.2 Green-Ampt入滲模型 11 2.4.3 降雨入滲浸潤帶 12 2.5土壤水分特性曲線SWCC 13 2.6 土壤水力傳導係數函數 19 2.6.1 Fredlund et al. (1994)之水力傳導係數函數推估法 19 2.6.2 Green and Corey(1971)之水力傳導係數推估法 20 2.6.3 Van Genuchten (1980)之水力傳導係數推估法 22 2.7 數值分析程式 23 2.7.1 滲流分析程式SEEP/W 23 2.7.1.1程式簡介 23 2.7.1.2滲流分析理論 23 2.7.2邊坡穩定分析程式SLOPE/W 25 2.7.2.1程式簡介 25 2.7.2.2 穩定分析理論 25 2.7.3變形分析程式SIGMA/W 29 2.7.3.1程式簡介 29 2.7.3.2 變形分析理論 29 2.7.3.3變形與孔隙水壓力消長耦合分析 29 2.7.3.4 不飽和土壤模數 32 2.8近代解析法實務排水方程式; 33 2.8.1 Cook, Crenshaw and Santi方程式(2004, 2012) 33 2.8.2 Tsao, Wang and Chen方程式(2005) 41 2.8.3 解析法方程式中採用變數之決定方式 43 2.8.4解析法之綜合評論(適用條件及限制) 49 2.9集水管、集水井配置原則 50 2.9.1集水管配置原則 50 2.9.1.1管壁開孔 53 2.9.1.2打設長度 53 2.9.1.3打設間距(扇形與平行配置) 54 2.9.1.4打設方位 Drain Orientation 56 2.9.2 集水井 Drainage Well 56 2.9.2.1施設位置 56 2.9.2.2井筒材質 Liner of Vertical Shaft 57 2.10 排水工法數值分析之文獻研究 58 2.10.1 Rahardjo et al.,(2003)(如圖2-33) 58 2.10.2 Tsao T.M. et al., (2005) 59 2.10.3 Eberhardt E. et al., (2007)(如圖2-35(a) (b) (c) (d)) 61 2.10.4 Rahardjo et al.,( 2012)(如圖2-36(a) (b) (c) (d)) 63 2.10.5 Matti Boris et al., (2012)(如圖2-37(a) (b) (c)) 65 2.11案例分析 68 2.11.1梨山地滑整治工程(林德貴、朱家勁、蘇苗彬,2017) 68 2.11.1.1地理位置 68 2.11.1.2地形與地質 68 2.11.1.3 地滑發生機制及主要原因 69 2.11.1.4 地下排水及整治工程 70 2.11.1.5 梨山地滑區及地下排水之數值模型 74 2.11.1.6地下排水工法效益評估 78 2.11.2以數值方法評估地下排水工法對邊坡穩定之有效性(蔡雅如2012) 88 2.11.2.1建立數值模型 88 2.11.2.2邊坡穩定性安全係數分析 92 2.11.2.3地下排水工法設計參數研究 97 2.11.2.4集水井設計參數 100 2.11.2.5集水井設計參數研究敏感度分析 106 2.11.3降雨-入滲-滲流情況下邊坡穩定影響因子參數研究(鄭順隆2006) 108 2.11.3.1 地形因子 (β、H) 110 2.11.3.2 地質因子 (C、ψ、γ、ψb及k(u)~u函數曲線) 111 2.11.3.3水文因子 (颱風雨型、梅雨雨型及初始地下水水位) 113 2.11.3.4 崩積層厚度(dc)分析(如圖2-104) 114 2.11.3.5.參數靈敏度研究分析(如圖2-105、表2-25) 115 2.11.4 降雨條件下評估地下排水工法對梨山地滑地穩定性之影響 (彭之瑋2010) 117 2.11.4.1地理位置、地形與地質資料彙整(台中縣和平鄉梨山地區二處地滑區,如圖2-106、圖2-107) 117 2.11.4.2地滑地整治穩定性分析 118 2.12 九份地滑相關研究 122 2.12.1 監測資料彙整 122 2.12.2 滑動機制分析 謝豪榮、鄒政樺(1999),「九份地滑地穩定性之探討」 122 2.12.3 滑動體塊分析 123 2. 13國內地滑區集水井工程彙整 124 2.14國內外邊坡危險(預警)基準值訂定 127 2.14.1管理值訂定之考量因素 127 2.14.2邊坡監測管理值之訂定步驟 128 第三章 研究方法 131 3.1 研究流程 131 3.2 九份地滑地現地資料蒐集及彙整 (本章圖3-4、3-5、3-8、3-9、3-10、3-14、3-22引用自新北市政府農業局(2015)「九份地層滑動區大地工程調查分析及坡地安全報告」之圖資) 133 3.2.1 地理位置 133 3.2.2 地形與地質 134 3.2.2.1 地形 134 3.2.2.1.1 地形測量資料彙整 134 3.2.2.2 地質調查作業 137 3.2.3 地表地質調查 137 3.2.3.1地表地質調查作業 137 3.2.3.2 鑽孔資料彙整 140 3.2.3.3 岩土材料力學試驗 (鑽探孔取樣實驗資料) 143 3.2.4 張力裂縫調查 147 3.2.4.1裂縫型態 147 3.2.4.2 調查分區 147 3.2.5監測配置 148 3.2.5.1自動化監測系統 148 3.2.5.2手動監測系統(傾斜觀測管佈設) 152 3.2.6 地球物理探測 155 3.2.6.1 岩層反射震測探測調查: 155 3.2.6.2 地下水探測 155 3.2.6.2.1地下水檢層探測 156 3.2.6.2.2地下水探測方法 156 3.2.6.2.3 地下水探測佈設 160 3.2.7集水井佈設規劃 165 3.2.7.1集水井設計規格尺寸 165 3.2.7.2集水井佈設原則W1、W2、W3、W4、W5集水井配置(如圖3-24(a)(b)) 167 3.2.8 TDR佈設規劃 168 3.2.9雨量頻率與設計雨型分析 171 3.2.9.1 雨量頻率分析 171 3.2.9.2 設計雨型 172 3.3幾何模型 174 3.3.1幾何模型 175 3.3.2初始條件 176 3.3.2.1 SEEP/W初始條件: 176 3.3.2.2 SLOPE/W初始條件: 176 3.3.3數值模型邊界條件 177 3.3.3.1滲流分析邊界條件 177 3.3.3.2橫向集水管與集水井數值模擬之邊界條件設定 178 3.3.4輸入參數 179 3.3.4.1 A1-剖面參數 179 3.3.4.2 B-剖面參數 181 3.3.5分析執行 183 3.3.5.1 地下排水工法整治前SEEP/W分析執行: 183 3.3.5.2 整治前、後SEEP/W分析執行: 183 3.3.5.3 整治前、後SLOPE/W分析執行 185 3.3.5.4 整治前、後SEEP/W分析執行 186 3.3.5.5 整治前、後SLOPE/W分析執行: 186 3.3.5.6九份地滑地整治前、後孔隙水壓與潛在滑動面穩定性安全係數之關係 186 第四章 結果與討論 188 4.1 監測結果分析與詮釋 188 4.1.1 地表地質調查成果分析 188 4.1.1.2小結 195 4.1.2 滑動機制分析 204 4.1.2.1 張力裂縫調查成果 204 4.1.2.2 滑動機制分析 206 4.1.2.3傾斜管監測滑動深度、位移量及方位分析 208 4.1.2.4 傾斜管側向位移反應 211 4.1.3 地球物理探測成果 211 4.1.3.1反射震測探測法 211 4.1.3.2地下水流動深度檢測成果(地下水檢層試驗) 212 4.1.3.3地下水水流路徑判釋 215 4.1.3.4小結(如表4-7) 220 4.2集水井工法整治之效益評估 224 4.2.1降雨期間整治前、後地下水水位變動 224 4.2.2降雨期間集水井排水管之排水量監測 229 4.2.3降雨期間整治前、後地層傾斜管位移(管理值) 230 4.2.3集水井整治前後各滑動體位移速率分析 233 4.2.4 降雨期間整治前、後TDR監測分析 237 4.2.5 小結(如表4-11) 239 4.2.6 邊坡滑動穩定分析 241 4.3九份地滑地數值模擬分析成果 242 4.3.1降雨滲流分析驗證 242 4.3.1.1 小結 243 4.3.2集水井排水工法整治前、後孔隙水壓與潛在滑動面穩定性安全係數之關係 244 4.3.2.1 A1-剖面 244 4.3.2.1.1 第一潛在滑動面 244 4.3.2.1.2 第二潛在滑動面 247 4.3.2.1.3 第三潛在滑動面(如圖4-48) 250 4.3.2.1.4 小結 253 4.3.2.2 B-剖面 254 4.3.2.3整治前、後潛在滑動面之孔隙水壓與穩定性安全係數分析 258 4.3.3九份地滑地降雨期間體積含水量之變化 259 4.3.4 不同重現期距之降雨強度對邊坡穩定之影響 262 4.3.5九份地滑地降雨期間滲流與應力位移分析 264 4.3.5.1降雨位移分析驗證 264 4.3.5.2九份地滑地莫拉克颱風降雨期間位移變化 265 4.3.6集水井參數研究 267 4.3.6.1橫向集水管施作位置 267 4.3.6.1.1橫向排水管打設不同高度模擬分析 268 4.3.6.1.2橫向集水管施作不同高度位置之安全係數分析 269 4.3.6.1.3橫向集水管施作不同高度位置之位移量比較 270 4.3.6.2橫向集水管施作長度 271 4.3.6.2.1橫向集水管施作不同長度之位移量比較 274 4.3.6.3九份地滑地莫拉克颱風降雨期間位移變化 275 4.4 防災管理值分析 276 4.4.1滑動塊體位移値分析 276 4.4.2降雨及地下水位量測値分析 276 4.4.3數值模擬安全係數分析値(滑動面位移量與安全係數之關係) 278 4.4.4九份地滑地數值模擬分析管理值建議 279 4.4.4.1降雨量及地下水位管理基準值 279 4.4.4.2位移管理基準值 280 第五章 結論與建議 281 5.1結論 281 5.1.1調查監測評析結論 281 5.1.2數值分析結論 281 5.2 建議 282 參考文獻 284 附錄A 地質材料參數 28

    A SOLAR CELL APPARATUS WITH PHOTONIC CRYSTAL STRUCTURES

    No full text
    [[abstract]]本創作揭示具有光子晶體結構之太陽能電池裝置,包含一太陽電池;一電容;及複數個光子晶體結構。該複數個光子晶體結構可實現反射太陽電池內部的光能,並且增加太陽電池的轉換效率

    利用空間統計及權重法進行土石流潛勢溪流

    No full text
    台灣地區因地理環境的因素易受颱風豪雨的侵襲,颱風豪雨除在平原區帶來淹水的災害外在山區也有可能造成嚴重的土石流災害,有鑑於氣候環境的變遷導致降雨型態的改變,評估雨量測站能否滿足土石流防災業務的需求,已是重要之課題。 本研究蒐集大台北地區1998年至2013年颱風及豪雨事件雨量資料,利用克利金推估法計算試驗半變異元,並進行不同模式的理論半變異元套配,透過交叉驗證並引入克利金均方誤差(KAE)及克利金平方誤差(KRMSE)檢定模型適配程度,評估成果顯示雨量站觀測範圍為半徑5公里;透過雨量站觀測範圍評估成果將大台北地區進行網格劃設進行雨量站密度檢討,經評估格網內有土石流潛勢溪流而卻欠缺雨量站網格共計38個;為瞭解各欠缺雨量站格網設站的順序,本研究透過循序演算法及現有雨量站空間特性、等加權因子進行檢討,以評估設站優先順序;最後為瞭解新增雨量站的效益,本研究利用克利金變異數推估與空間分析,經評估各區潛勢溪流與鄰近雨量站距離均可縮減至5公里以下;此外,研究成果亦發現在新增10站雨量站時,克利金變異數下降幅度較高,增站效益較佳。Due to the geographical environment conditions, Taiwan frequently suffers from severe typhoons and rainfall events. These events cause not only flooding disasters in the plain area but also the debris flow disasters in mount ainous areas. Climate change further changes the rainfall patterns. Therefore, a reliable rainfall gauge observation network is important to support disaster prevention works. This study researches on improving rainfall gauge observation network. An experimental semi-variogram is used to fit different types of theoretical variogram models using collected rainfall data of typhoon and rainfall events from 1998 to 2013 in Taipei area. The appropriate theoretical variogram model is determined with the KAE and KRMSE methods. The analysis result shows that the observation range of rain gauge is about 5 km. Through the foregoing results and reviewing the number of rain gauges in Taipei area. After generating 5 by 5 km grids for Taipei area, we found 38 grids which have potential debris flow risk but lack of rain gauges. In order to assess the priority of rain gauges establishment, this research applies the sequential algorithm with the spatial property and weighting factors to evaluate the benefits for each potential new rain gauges. Kriging variance and spatial analysis are adopted for this assessment. After assessment, the distance between the potential debris flow area and rain gauge nearby can be less than 5 km. Furthermore, the results show that the value of kriging variance will decrease and also have better benefits when 10 rain gauges are established
    corecore