4 research outputs found

    改进的幻影方案在拥塞避免与控制中的应用

    No full text

    基于柔性QoS的资源动态分配策略研究

    No full text

    基于小波变换的最小失真预测/多级矢量量化

    No full text

    混合高斯过程回归模型在铁水硅含量预报中的应用 = Composite gaussian process regression model and its application to prediction of silicon content in hot metal

    No full text
    为了提高基于高斯过程回归的软测量模型的预测精度,提出了一种混合高斯过程回归模型。该模型将高斯过程回归模型预测输出值的方差及其分布作为主要考虑因素,对多个高斯过程回归模型的输出值进行组合输出,获得了比单个高斯过程回归模型更高的预测精度和更强的模型鲁棒性。将该模型实用于高炉铁水硅含量预报模型的建模,获得了比使用单个高斯过程回归模型建模时更好的应用效果。In order to increase the predictive precision of gaussian process regression based soft sensor, a composite gaussian process regression model is proposed. This model combines the outputs of several gaussian process models as the output according to the variances and the distribution of the outputs, which results in higher prediction accuracy and higher robustness than the single gaussian process model. The proposed composite gaussian process regression model is successfully applied to the prediction of silicon content in hot metal.Published versio
    corecore