6 research outputs found

    一种燃料电池催化剂浆液及其应用

    No full text
    一种质子交换膜燃料电池催化层浆液的制备方法,其中催化剂浆液组分包括催化剂、导电聚合物和溶剂,所述催化剂浆液的粘度为100-1000mPa·s;固含量为10~50wt%。通过控制浆液的最终粘度和固含量确保浆液的形态和催化层制备效率和效果。采用本浆液制备的催化层电极用于组装质子交换膜燃料电池膜电极(MEA?Membrane?Electrode?Assemble),其孔径分布更利于气液两相传质,有利于电池在高电流密度区间的性能和稳定性的提高

    一种高温燃料电池用阴极催化层及其制备和膜电极

    No full text
    一种高温燃料电池用膜电极,阴极催化层中除含有氧还原催化剂、粘结剂和疏水剂外,还含有磷酸和硅油。磷酸作为液体电解质在高温条件下有助于质子的传导,但因其溶氧性不好,将其添加到阴极催化层中不利于氧气的传输;硅油是一种由聚硅氧烷组成的液体制品,它具有储氧能力强、氧气在其中的传输速度快两个优点,因此,在制备膜电极过程中将其随磷酸均匀的添加到阴极催化层中可以避免因氧传质差导致的电池性能降低

    空气中so2对直接甲醇燃料电池性能影响

    No full text
    直接甲醇燃料电池(DMFC)通常采用空气中氧气作为氧化剂,但空气中硫化物、氮化物等污染物会对电池性能造成影响.本文采用恒流放电曲线、极化曲线、循环伏安扫描(CV)和电化学阻抗谱(EIS)等方法,研究SO2对DMFC电池性能影响,分析其毒化作用机制.研究表明,SO2毒化导致催化剂电化学活性面积(ECSA)减小,氧还原反应(ORR)电荷转移电阻增大,从而造成DMFC电池开路电压和工作电压加速衰减,峰值功率密度减小.进一步探究了三种恢复策略,空气吹扫与I-V变载操作都只能实现电池性能的部分恢复,CV扫描可完全恢复电池性能

    质子交换膜燃料电池新型抗CO阳极结构

    No full text
    质子交换膜燃料电池(PEMFC)广泛采用重整气为燃料。其存在的主要问题是重整气中含有一定浓度的CO(5×10^-5~10^-2),CO在Pt表面具有强烈的吸附作用,使电催化剂“中毒”。通过对提高质子交换膜燃料电池抗CO问题进行研究,在阳极扩散层流场侧担载催化剂(Pt、PtRu)的方法对电极进行修饰,在注入较少量氧化剂(体积百分比为2%的空气)的条件下使电池抗CO性能显著增强,且可以避免电极局部温度过高及可能带来的安全性问题

    Investigations of Smooth Function of Polyethylene Glycol Surfactants on the Electrolessly Deposited Silver Film

    No full text
     应用原子力显微镜技术及开路电位~时间谱技术,研究了非离子表面活性剂聚乙二醇2000,6000,20000对硅(100)表面无电沉积银膜的光滑作用.实验表明硅(100)表面无电沉积银的光滑程度以及镀层的质量均随聚乙二醇聚合度的增加而变好.Some non_ionic surfactants of Polyethylene Glycol 2000,6000 and 20000 were used to estimate the smooth affection on the electrolessly deposited silver film. The adsorption state of the surfactants about Si/solution interface was investigated by using open circuit potential_time technology (Op_t).As comparative experiments, the atomic force microscopy (AFM) was also performed to study the surface smooth effection of the surfactants. It was found that with the increasing of the carbon chain in the surfactants, the smooth effection is getting great. PEG 20000 showed the best smooth function.作者联系地址:兰州大学化学化工学院,兰州大学化学化工学院,兰州大学化学化工学院,兰州大学化学化工学院,兰州大学化学化工学院 甘肃兰州730000 ,甘肃兰州730000 ,甘肃兰州730000 ,甘肃兰州730000 ,甘肃兰州730000Author's Address: College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000, Chin

    Effects of SO2 in Air on Performance of Direct Methanol Fuel Cell

    No full text
    直接甲醇燃料电池(DMFC)通常采用空气中氧气作为氧化剂,但空气中硫化物、氮化物等污染物会对电池性能造成影响. 本文采用恒流放电曲线、极化曲线、循环伏安扫描(CV)和电化学阻抗谱(EIS)等方法,研究SO2对DMFC电池性能影响,分析其毒化作用机制. 研究表明,SO2毒化导致催化剂电化学活性面积(ECSA)减小,氧还原反应(ORR)电荷转移电阻增大,从而造成DMFC电池开路电压和工作电压加速衰减,峰值功率密度减小. 进一步探究了三种恢复策略,空气吹扫与I-V变载操作都只能实现电池性能的部分恢复,CV扫描可完全恢复电池性能.Direct methanol fuel cells (DMFC) generally use oxygen as an oxidant. Contaminants such as sulfides and nitrides in the air can affect the performance of the DMFC. In this work, the effects of SO2 on the performance of DMFC were investigated and the mechanism of poisoning was analyzed, by means of constant current discharge curve, polarization performance curve, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In the CV scan, the permeated methanol was oxidized at a low potential to eliminate its effect on the SO2 poisoning behavior test. The results showed that the SO2 poisoning resulted in a decrease in the electrochemical activity surface area (ECSA) of the catalyst. Meanwhile, the EIS data indicated that the poisoning led to an increase in the charge transfer resistance of the oxygen reduction reaction (ORR). Therefore, the poison accelerated decay of the open circuit voltage and operating voltage of the DMFC, and decreased the peak power density. Further investigations of three recovery strategies, dry air purging and load-shifting I-V operations could only partially restore the performance of DMFC. However, CV scanning could accomplish the recovery more completely.国家自然科学基金项目(No. 21576259)资助作者联系地址:1. 中国科学院大连化学物理研究所, 辽宁 大连 116023; 2. 中国科学院大学, 北京 100039Author's Address: 1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China通讯作者E-mail:[email protected]; [email protected]
    corecore