13 research outputs found
不同形貌普鲁士蓝纳米粒子的合成及光热性能
制备了立方体、直角立方体、球形、棒状、中空状、核壳状、梭形、多面体等8种不同形貌的普鲁士蓝纳米粒子,利用扫描电子显微镜、透射电子显微镜、紫外-可见分光光度计等对纳米粒子进行了表征,考察了普鲁士蓝纳米粒子光热性能的影响因素.结果表明,普鲁士蓝纳米粒子的形貌与光热性能之间联系密切,粒子形貌不同,光热性能不同;当外部实验条件一定时,纳米粒子的形貌、大小、吸收横截面积、尖锐化程度及密实程度等对其光热性能有很大的影响;当纳米粒子形貌一定时,外部因素如激光器的选择、激光功率密度及纳米粒子的浓度等直接影响普鲁士蓝纳米粒子的光热性能;在相同浓度下,激光功率密度越大,纳米粒子的升温效果越明显,光热性能越好;而激光功率密度不变时,纳米粒子浓度越大,其光热转换效率越高.国家自然科学基金(批准号:31271071,31371012,U1505228)资助~
高寒草原土壤交换性盐基离子对氮添加的响应:以紫花针茅草原为例
土壤交换性盐基离子(Ca~(2+)、Mg~(2+)、K~+、Na~+)在维持土壤养分与缓冲土壤酸化中起着重要作用,了解其对氮添加的响应有助于准确评估氮沉降背景下生态系统结构与功能的动态变化。然而,目前关于土壤交换性盐基离子对氮添加响应的相关研究主要集中在酸性土中。鉴于目前在碱性土中研究相对较少的现状,该研究以青藏高原高寒草原为研究对象,依托氮添加控制实验平台,通过连续3年(2014–2016)的测定,考察了8个不同施氮水平(0、1、2、4、8、16、24、32 g·m~(–2)·a~(–1))下土壤交换性盐基离子含量变化及其可能原因。结果显示:随着施氮量的增加,土壤交换性盐基离子,尤其是Mg~(2+)与Na~+含量显著降低。并且,盐基离子含量与植物地上生物量显著负相关(p<0.05),说明氮添加通过促进植物生长,加速植物对盐基离子的吸收,进而导致土壤中盐基离子含量降低。此外,盐基离子含量也与土壤无机氮含量呈显著负相关(p<0.05)关系,说明施氮还通过提高土壤中无机氮含量进而导致更多NH_4~+与土壤吸附的盐基离子交换,同时加剧NO_3~–淋溶,带走等电荷阳离子。需要指出的是,虽然连续施氮导致土壤pH值下降,但该土壤目前仍处于碳酸盐缓冲阶段,说明通常在酸性土中报道的"因缓冲土壤酸化引起的盐基离子损失机制"在碱性土中并不成立。这些结果意味着持续的氮输入会造成碱性土中盐基离子损失,进而影响土壤缓冲能力与植被生产力,未来草原生态系统管理中应重视这一问题
青藏高原高寒草地3米深度土壤无机碳库及分布特征
准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系。然而,由于深层土壤剖面信息匮乏,使得目前学术界对深层土壤无机碳库的了解十分有限。该研究基于342个3 m深度和177个50cm深度的土壤剖面信息,采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小,并在此基础上分析了该地区土壤无机碳密度的分布特征。结果显示,青藏高原高寒草地0–50 cm、0–1 m、0–2 m和0–3 m深度的土壤无机碳库大小分别为8.26、17.82、36.33和54.29 Pg C,对应的土壤无机碳密度分别为7.22、15.58、31.76和47.46 kg C·m–2。研究区土壤无机碳密度总体呈现由东南向西北增加的趋势;高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度。整体上,不同深度的高寒草原无机碳库约占整个研究区无机碳库的63%–66%。此外,深层土壤中储存了大量无机碳,1 m以下土壤无机碳库是1 m以内无机碳库的2倍。两种草地类型土壤无机碳的垂直分布存在差异:对高寒草原而言,0–50 cm土壤无机碳所占的比例最大;但对高寒草甸而言,在100–150 cm深度土壤无机碳出现富集。这些结果表明青藏高原深层土壤是一个重要的无机碳库,需在未来碳循环研究中予以重视
Novel Optical Power Splitter Based on Nonperiodic Subwavelength High-Index-Contrast Grating
Amplitude analysis of the decays D0 → π+π−π+π− and D0 → π+π−π0π0*
Using e+e− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at the center-of-mass energy √s = 3.773 GeV with the BESIII detector, a joint amplitude analysis is performed on the decays D0 → π+π−π+π− and D0 → π+π−π0π0 (non-η). The fit fractions of individual components are obtained, and large interferences among the dominant components of the decays D0 → a1(1260)π, D0 → π(1300)π, D0 → ρ(770)ρ(770), and D0 → 2(ππ)S are observed in both channels. With the obtained amplitude model, the CP-even fractions of D0 → π+π−π+π− and D0 → π+π−π0π0 (non-η) are determined to be (75.2 ± 1.1stat. ± 1.5syst.) % and (68.9 ± 1.5stat. ± 2.4syst.)%, respectively. The branching fractions of D0 → π+π−π+π− and D0 → π+π−π0π0 (non-η) are measured to be (0.688 ± 0.010stat. ± 0.010syst.)% and (0.951 ± 0.025stat. ± 0.021syst.)%, respectively. The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D0 → 4π when used to determine the CKM angle γ(φ3) via the B− → DK− decay
Measurement of integrated luminosity of data collected at 3.773 GeV by BESIII from 2021 to 2024
We present a measurement of the integrated luminosity e+e- of collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm = 3.773 GeV. The integrated luminosities of the datasets taken from December 2021 to June 2022, from November 2022 to June 2023, and from October 2023 to February 2024 were determined to be 4.995±0.019 fb-1, 8.157±0.031 fb-1, and 4.191±0.016 fb-1, respectively, by analyzing large angle Bhabha scattering events. The uncertainties are dominated by systematic effects, and the statistical uncertainties are negligible. Our results provide essential input for future analyses and precision measurements
