5 research outputs found

    Establishment of SCAR Markers and Its Application in Identification and Au- thenticity of Parent Purity of Five Hybrid japonica Rice Lines

    Get PDF
    选用36个随机引物对“寒丰A”、“寒丰B”、“8204A”、“8204B”、“R161”等5份杂交粳稻亲本材料进行RAPD扩增,对其中特异RAPD标记片段进行克隆和测序。根据获得的特异DNA序列设计序列特征扩增区(SCAR)特异的引物,将18个RAPD标记转化成6个稳定的SCAR标记。用这些SCAR标记对亲本和杂种F1代单株进行检测,实验室检测种子纯度的结果与海南田间种植的结果基本一致。此外,应用水稻细胞质雄性不育特异的1对PCR引物,分辨出2对不育系/保持系亲本:“寒丰A”与“寒丰B”、“8204A”与“8204B”。上海市科技兴农重点攻关项目[农科攻字(2000)号第1-3号];; 上海市农业科学院青年科技基金(2000-09-02-1

    Loop-Mediated Isothermal Amplification(LAMP) for Detection of Alicyclobacillus acidoterrestris in Foods

    Get PDF
    目的:利用环介导等温扩增技术建立食品中酸土环脂芽孢杆菌快速检测方法。方法:针对酸土环脂芽孢杆菌16S序列设计特异引物,再优选反应体系,用显色法检测实验结果。结果:该方法能够在63℃条件下1 H内检出食品中酸土环脂芽孢杆菌,所设计的引物有良好的特异性;灵敏度达6.7 Cfu/M l(弱阳性)。结论:该方法具有高效、特异性强和敏感性高等特点,可满足酸土环脂芽孢杆菌快速检测筛选的要求。Purpose: A loop-mediated isothermal amplification(LAMP) method was established for the detection of Alicyclobacillus acidoterrestris in foods.Methods: After optimization of the reaction conditions of LAMP including the concentrations of primers, reaction time and amplification temperature, the LAMP method was developed, and its sensitivity and specificity were evaluated.Results: The method was capable of rapidly and specifically detecting A.acidoterrestris in foods within 1 hour at a constant temperature of 63 ℃.The sensitivity of the method was 6.7 CFU/m L and the specificity was 100%.Conclusions: The LAMP method is efficient, highly sensitive and specific, and suitable for the rapid detection of A.acidoterrestris in various food samples.福建省漳州市自然科学基金项目(ZZ2012J16

    Genomic Insights into the Formation of Human Populations in East Asia

    Get PDF
    厦门大学人类学研究所、厦门大学生命科学学院细胞应激生物学国家重点实验室王传超教授课题组与哈佛医学院David Reich教授团队合作,联合全球43个单位的85位共同作者组成的国际合作团队通过古DNA精细解析东亚人群形成历史。研究人员利用古DNA数据检验了东亚地区农业和语言共扩散理论,综合考古学、语言学等证据,该研究系统性地重构了东亚人群的形成、迁徙和混合历史。这是目前国内开展的东亚地区最大规模的考古基因组学研究,此次所报道的东亚地区古人基因组样本量是以往国内研究机构所发表的样本量总和的两倍,改变了东亚地区尤其是中国境内考古基因组学研究长期滞后的局面。 该研究是由王传超教授团队与哈佛医学院(David Reich教授)、德国马普人类历史科学研究所(Johannes Krause教授)、复旦大学现代人类学教育部重点实验室(李辉教授和金力院士)、维也纳大学进化人类学系(Ron Pinhasi副教授)、南洋理工大学人文学院(Hui-Yuan Yeh助理教授)、俄罗斯远东联邦大学科学博物馆(Alexander N Popov研究员)、西安交通大学(张虎勤教授)、蒙古国国家博物馆研究中心、乌兰巴托国立大学考古系、华盛顿大学人类学系、台湾成功大学考古所、加州大学人类学系等全球43个单位的85位共同作者组成的国际合作团队联合完成的。厦门大学人类学研究所、厦门大学生命科学学院细胞应激生物学国家重点实验室为论文第一完成单位。厦门大学人类学研究所韦兰海副教授、胡荣助理教授、郭健新博士后、何光林博士后和杨晓敏硕士参与了研究工作。The deep population history of East Asia remains poorly understood due to a lack of ancient DNA data and sparse sampling of present-day people1,2. We report genome-wide data from 166 East Asians dating to 6000 BCE-1000 CE and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan plateau are linked by a deeply-splitting lineage likely reflecting a Late Pleistocene coastal migration. We follow Holocene expansions from four regions. First, hunter-gatherers of Mongolia and the Amur River Basin have ancestry shared by Mongolic and Tungusic language speakers but do not carry West Liao River farmer ancestry contradicting theories that their expansion spread these proto-languages. Second, Yellow River Basin farmers at ~3000 BCE likely spread Sino-Tibetan languages as their ancestry dispersed both to Tibet where it forms up ~84% to some groups and to the Central Plain where it contributed ~59-84% to Han Chinese. Third, people from Taiwan ~1300 BCE to 800 CE derived ~75% ancestry from a lineage also common in modern Austronesian, Tai-Kadai and Austroasiatic speakers likely deriving from Yangtze River Valley farmers; ancient Taiwan people also derived ~25% ancestry from a northern lineage related to but different from Yellow River farmers implying an additional north-to-south expansion. Fourth, Yamnaya Steppe pastoralist ancestry arrived in western Mongolia after ~3000 BCE but was displaced by previously established lineages even while it persisted in western China as expected if it spread the ancestor of Tocharian Indo-European languages. Two later gene flows affected western Mongolia: after ~2000 BCE migrants with Yamnaya and European farmer ancestry, and episodic impacts of later groups with ancestry from Turan.We thank David Anthony, Ofer Bar-Yosef, Katherine Brunson, Rowan Flad, Pavel Flegontov,Qiaomei Fu, Wolfgang Haak, Iosif Lazaridis, Mark Lipson, Iain Mathieson, Richard Meadow,Inigo Olalde, Nick Patterson, Pontus Skoglund, Dan Xu, and the four reviewers for valuable comments. We thank Naruya Saitou and the Asian DNA Repository Consortium for sharing genotype data from present-day Japanese groups. We thank Toyohiro Nishimoto and Takashi Fujisawa from the Rebun Town Board of Education for sharing the Funadomari Jomon samples, and Hideyo Tanaka and Watru Nagahara from the Archeological Center of Chiba City who are excavators of the Rokutsu Jomon site. The excavations at Boisman-2 site (Boisman culture), the Pospelovo-1 site (Yankovsky culture), and the Roshino-4 site (Heishui Mohe culture) were funded by the Far Eastern Federal University and the Institute of History,Archaeology and Ethnology Far Eastern Branch of the Russian Academy of Sciences; research on Pospelovo-1 is funded by RFBR project number 18-09-40101. C.C.W was funded by the Max Planck Society, the National Natural Science Foundation of China (NSFC 31801040), the Nanqiang Outstanding Young Talents Program of Xiamen University (X2123302), the Major project of National Social Science Foundation of China (20&ZD248), a European Research Council (ERC) grant to Dan Xu (ERC-2019-ADG-883700-TRAM) and Fundamental Research Funds for the Central Universities (ZK1144). O.B. and Y.B. were funded by Russian Scientific Foundation grant 17-14-01345. H.M. was supported by the grant JSPS 16H02527. M.R. and C.C.W received funding from the ERC under the European Union’s Horizon 2020 research and innovation program (grant No 646612) to M.R. The research of C.S. is supported 30 by the Calleva Foundation and the Human Origins Research Fund. H.L was funded NSFC (91731303, 31671297), B&R International Joint Laboratory of Eurasian Anthropology (18490750300). J.K. was funded by DFG grant KR 4015/1-1, the Baden Württemberg Foundation, and the Max Planck Institute. Accelerator Mass Spectrometry radiocarbon dating work was supported by the National Science Foundation (NSF) (BCS-1460369) to D.J.K. and B.J.C. D.R. was funded by NSF grant BCS-1032255, NIH (NIGMS) grant GM100233, the Paul M. Allen Frontiers Group, John Templeton Foundation grant 61220, a gift from Jean-Francois Clin, and the Howard Hughes Medical Institute. 该研究得到了国家自然科学基金“中国东南各族群的遗传混合”、国家社科基金重大项目“多学科视角下的南岛语族的起源和形成研究”、厦门大学南强青年拔尖人才支持计划A类、中央高校基本科研业务费等资助

    滴灌枸杞对龟裂碱土几种酶活性的改良效应

    No full text
    在盐碱地改良利用过程中,有必要研究土壤酶活性变化,以评价土壤环境质量的改善。龟裂碱土重度盐碱荒地主要分布在我国西北旱区,该土壤碱化度高,结构差,导水率极低。2009年,采用滴头下设置沙穴的方式滴灌种植枸杞,开垦利用该盐碱荒地。2011年枸杞生长季末,在不同种植年限地块土壤剖面上网格状密集取土,进行土壤脲酶、碱性磷酸酶和蔗糖酶活性的测定。结果表明,未种植土壤3种酶活性极低;滴灌种植之后,随着根区土壤水盐特性和养分状况的改善,土壤酶活性显著增加。就整个土壤剖面而言,土壤酶活性自根区向四周逐渐降低,表现出较大的空间变异性。相关性和通径分析结果显示,土壤pH始终是影响该土壤酶活性的主要因子,且在pH7.38~10.00的范围内,3种酶活性随土壤pH的增大呈指数式减小(p < 0.01)。总之,滴灌种植枸杞之后,龟裂碱土重度盐碱荒地土壤生物学性质得到显著改善

    浅层填沙滴灌种植枸杞改良龟裂碱土重度盐碱荒地研究

    No full text
    龟裂碱土重度盐碱荒地主要分布在我国西北旱区,其土壤碱化度高、结构差、导水率低是制约其改良利用的 关键因素。通过在滴头下方设置沙穴,探索在滴灌条件下种植枸杞的方式改良利用该盐碱荒地的可行性。通过设 置- 5 kPa( S1) 、- 10 kPa( S2) 、- 15 kPa( S3) 、- 20 kPa( S4) 和- 25 kPa( S5) 5 个不同土壤基质势控制灌水下限处 理,寻求最优的滴灌灌溉制度。结果表明,种植后土壤水分入渗性能得到显著改善,滴头下湿润区域面积不断增 大,逐渐形成一个脱盐区( ECe < 4 dS /m) 。控制较高的土壤基质势下限,有利于土壤盐分的淋洗。滴灌种植后土壤 的ECe /SARe 显著增加,说明土壤盐分组成特征发生变化,土壤物理性质得到改善; 土壤速效养分含量显著增加,其 中硝态氮表现出较强的随水迁移性,存在淋失风险,而速效磷随水迁移性弱,主要积累在0 ~ 20 cm 深度内。种植 3 a 之后,S1 成活率最低( 56. 8%) ,S3 最高( 81. 1%) ,而S2、S3 和S4 产量显著高于其他处理( p < 0. 05) ,三者之间 差异不显著,均为900 kg /hm2 左右,达到当地良田水平。结合土壤水盐特征、养分分布及枸杞生长等各方面因素, 可以通过在滴头下设置沙穴滴灌种植枸杞的方式改良龟裂碱土重度盐碱荒地,并在种植前2 a 控制土壤基质势下 限为- 10 kPa,从第3 年改为- 20 kPa。</p
    corecore