8 research outputs found
Observation of Wavelength Tuning in a Mode-Locked Figure-9 Fiber Laser
We demonstrate an all-PM Er-doped soliton mode-locked fiber oscillator based on the figure-9 configuration with a compact adjustable reflection-type non-reciprocal phase shifter. An analytical model based on the Jones matrix is established to simulate the wavelength tuning phenomenon. Experimentally, it is observed that the increase in pump power results in a significant redshift in the spectrum of output pulses. When the angle of the half-wave plate is rotated in one direction, the output spectrum is redshifted and then blueshifted successively. Good qualitative agreement is presented between the simulations and the experimental results. It is shown that the increase in pump power changes the nonlinear phase shift, which causes the redshift of the transmittance curves at the laser output port. In contrast, the rotation of wave plates not only changes the nonlinear phase shift difference, but also causes variations in linear phase bias and modulation depth. The changes in these parameters lead to the redshift and blueshift of the transmission curves, which enables wavelength tuning
Observation of Wavelength Tuning in a Mode-Locked Figure-9 Fiber Laser
We demonstrate an all-PM Er-doped soliton mode-locked fiber oscillator based on the figure-9 configuration with a compact adjustable reflection-type non-reciprocal phase shifter. An analytical model based on the Jones matrix is established to simulate the wavelength tuning phenomenon. Experimentally, it is observed that the increase in pump power results in a significant redshift in the spectrum of output pulses. When the angle of the half-wave plate is rotated in one direction, the output spectrum is redshifted and then blueshifted successively. Good qualitative agreement is presented between the simulations and the experimental results. It is shown that the increase in pump power changes the nonlinear phase shift, which causes the redshift of the transmittance curves at the laser output port. In contrast, the rotation of wave plates not only changes the nonlinear phase shift difference, but also causes variations in linear phase bias and modulation depth. The changes in these parameters lead to the redshift and blueshift of the transmission curves, which enables wavelength tuning. 
Transient behaviors of pulse breaking and recovering in a dispersion-managed mode-locked Yb fiber laser
Various pulse regimes have been discovered in mode-locked fiber lasers with carefully designed cavity setups. However, the transitions between different types of stable pulse solutions are rarely observed in a laser with the same cavity configuration. Here, we report on the experimental observation of the transformation from stretched pulses (SPs) to dissipative solitons (DSs) in an all-polarization-maintaining dispersion-managed mode-locked Yb fiber laser for the first time. By means of the time-stretch dispersive Fourier transform technique, the temporal and spectral dynamics of transient behaviors from pulse breaking to pulse recovering are identified in real time. It is revealed that the overdriven nonlinear effect induced by pump increase triggers the wave breaking of SPs, and the improved net-cavity dispersion originated from wavelength shift helps the self-recovering of DSs. Numerical simulations validate the experimental observations and bring insights to the understanding of transient nonlinear dynamics in ultrafast fiber lasers
Recommended from our members
Nonlinear co-generation of graphene plasmons for optoelectronic logic operations.
Surface plasmons in graphene provide a compelling strategy for advanced photonic technologies thanks to their tight confinement, fast response and tunability. Recent advances in the field of all-optical generation of graphene's plasmons in planar waveguides offer a promising method for high-speed signal processing in nanoscale integrated optoelectronic devices. Here, we use two counter propagating frequency combs with temporally synchronized pulses to demonstrate deterministic all-optical generation and electrical control of multiple plasmon polaritons, excited via difference frequency generation (DFG). Electrical tuning of a hybrid graphene-fibre device offers a precise control over the DFG phase-matching, leading to tunable responses of the graphene's plasmons at different frequencies across a broadband (0 ~ 50 THz) and provides a powerful tool for high-speed logic operations. Our results offer insights for plasmonics on hybrid photonic devices based on layered materials and pave the way to high-speed integrated optoelectronic computing circuits
Dispersive Fourier transform based dual-comb ranging
Abstract Laser-based light detection and ranging (LIDAR) offers a powerful tool to real-timely map spatial information with exceptional accuracy and owns various applications ranging from industrial manufacturing, and remote sensing, to airborne and in-vehicle missions. Over the past two decades, the rapid advancements of optical frequency combs have ushered in a new era for LIDAR, promoting measurement precision to quantum noise limited level. For comb LIDAR systems, to further improve the comprehensive performances and reconcile inherent conflicts between speed, accuracy, and ambiguity range, innovative demodulation strategies become crucial. Here we report a dispersive Fourier transform (DFT) based LIDAR method utilizing phase-locked Vernier dual soliton laser combs. We demonstrate that after in-line pulse stretching, the delay of the flying pulses can be identified via the DFT-based spectral interferometry instead of temporal interferometry or pulse reconstruction. This enables absolute distance measurements with precision starting from 262 nm in single shot, to 2.8 nm after averaging 1.5 ms, in a non-ambiguity range over 1.7 km. Furthermore, our DFT-based LIDAR method distinctly demonstrates an ability to completely eliminate dead zones. Such an integration of frequency-resolved ultrafast analysis and dual-comb ranging technology may pave a way for the design of future LIDAR systems