2,127 research outputs found
Analysis of significant factors on cable failure using the Cox proportional hazard model
This paper proposes the use of the Cox proportional hazard model (Cox PHM), a statistical model, for the analysis of early-failure data associated with power cables. The Cox PHM analyses simultaneously a set of covariates and identifies those which have significant effects on the cable failures. In order to demonstrate the appropriateness of the model, relevant historical failure data related to medium voltage (MV, rated at 10 kV) distribution cables and High Voltage (HV, 110 kV and 220 kV) transmission cables have been collected from a regional electricity company in China. Results prove that the model is more robust than the Weibull distribution, in that failure data does not have to be homogeneous. Results also demonstrate that the method can single out a case of poor manufacturing quality with a particular cable joint provider by using a statistical hypothesis test. The proposed approach can potentially help to resolve any legal dispute that may arise between a manufacturer and a network operator, in addition to providing guidance for improving future practice in cable procurement, design, installations and maintenance
Concise synthesis of artemisinin from a farnesyl diphosphate analogue
Artemisinin is one of the most potent anti-malaria drugs and many often-lengthy routes have been developed for its synthesis. Amorphadiene synthase, a key enzyme in the biosynthetic pathway of artemisinin, is able to convert an oxygenated farnesyl diphosphate analogue directly to dihydroartemisinic aldehyde, which can be converted to artemisinin in only four chemical steps, resulting in an efficient synthetic route to the anti-malaria drug
Optimising terpene synthesis with flow biocatalysis
Sesquiterpenes are an important family of natural products, many of which exhibit important pharmaceutical and agricultural properties. They are biosynthesised from farnesyl diphosphate in sesquiterpene synthase catalysed reactions. Here, we report the development of a highly efficient segmented flow system for the enzyme‐catalysed continuous flow production of sesquiterpenes. Design of experiment (DoE) methods were used to optimise the performance of the flow biocatalysis, and quantitative yields were achieved by using an operationally simple but highly effective segmented flow system
Effiziente chemoenzymatische Synthese von dhydroartemisinaldehyd
Artemisinin aus der Pflanze Artemisia annua ist das wirkungsvollste Arzneimittel zur Behandlung von Malaria. Die Sesquiterpen-Cyclase Amorphadien-Synthase, ein Cytochrom-abhängiges CYP450 und eine Aldehyd-Reduktase wandeln in der Pflanze Farnesyl-Diphosphat (FDP) in Dihydroartemisinaldehyd (DHAAl) um, welches ein Schlüsselzwischenprodukt in der Biosynthese von Artemisinin und eine halbsynthetische Vorstufe in der chemischen Synthese des Arzneimittels ist. Hier berichten wir über einen chemoenzymatischen Prozess, der in der Lage ist, DHAAl nur mithilfe der Sesquiterpen-Synthase aus einem gezielt synthetisierten, hydroxylierten FDP-Derivat herzustellen. Dieser Prozess, der die natürliche Sequenz aus Cyclisierung von FDP und Oxidation des Kohlenwasserstoffs umkehrt, stellt eine wesentliche Verbesserung der DHAAl-Synthese dar und zeigt das Potenzial neuer Substrate in der Terpen-Synthase-katalysierten Synthese hochwertiger Naturstoffe auf
Waste Edible Oil Fluid Catalytic Cracking in a Downer Reactor
The waste edible oil fluid catalytic cracking process (FCC), an environment friendly process to produce clean fuel (such as gasoline, diesel) and high-value chemical materials (such as propylene), was studied in an small hot model of downer reactor under the temperature 500 ℃, the pressure 1.1×105Pa , the resident time 1 second, the ratio of catalyst to oil 12 , and MA-83 as the catalyst. Compared with other processes, the waste edible oil FCC process can realize the waster utilizing and adjust the product distribution according to the market demand, while with a convenient pretreatment to the raw materials. The experimental results showed that the waste edible oil and cottonseed oil fluid catalytic cracking process have the similar product distribution: liquefied petroleum gas (LPG) 10.3wt%, gasoline 36.4wt%, diesel oil wt23%. And the desired product the gasoline and diesel with trace content of sulfur, nitrogen and heavy metals, have the similar molecular weight and chemical structure to the gasoline and diesel from petroleum-based fuel. Therefore, the waste edible oil fluid catalytic cracking is a promising process, with both economic and environmental benefit
Baicalein and U0126 suppress bladder cancer proliferation via MAPK signaling pathway
Purpose: To investigate baicalein and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126)effects on human bladder cell line T24 proliferation and related mechanisms.Methods: Twenty micromoles of baicalein or 10 μM U0126 were incubated with T24 cells. Cell viability was tested by CCK8 assay. Cell cycle was evaluated by flow cytometry while cell apoptosis was detected by Annexin V/PI and TUNEL assay. MAPK signaling pathway was evaluated by real time polymerase chain reaction (RT-PCR) and western blot.Results: Baicalein and U0126 suppressed bladder cancer cell T24 proliferation by blocking cell cycle in G0~G1 phase. TUNEL and Annexin V/PI detection showed both baicalein and U0126 induced T24 cell apoptosis. Baicalein and U0126 significantly down-regulated MAPK signaling pathway related molecule activity in both mRNA and protein levels (p < 0.05).Conclusion: Baicalein and U0126 restrain bladder cancer cell proliferation and promote cell apoptosis by affecting MAPK signaling pathway. Thus, they have potentials for use in the treatment of bladder cancer.Keywords: Bladder cancer, Baicalein, 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene, MAPK signal pathway, Apoptosi
- …
