12 research outputs found

    果樹灌溉節水技術

    No full text

    Research and Development on Vegetable Cultivation Techniques Under Structure

    No full text
    本計畫擬針對國內現有設施,中大隧道型溫網室環境下,針對蔬果栽培導入工廠化生產技術,包括:根域環境調控、遮蔭、人工光源補光及二氧化碳施放等技術,開發溫室空間有效利用以及作物週年生產技術,研擬病蟲害傳播途徑防堵措施、建立殺菌及害蟲防除系統,選植高產量品種,藉以達到倍增產量以及健康農業生產的目標。 台灣蔬菜品種,針對設施環境進行選拔者仍少;如何選出適合台灣設施環境生產,耐熱、耐濕以及抗病、抗蟲的品種,是為急務;選出兼顧品質與產量的蔬菜品種,亦為本計劃之重要目標。 The plant factory is a facility that aids the steady production of high-quality vegetables all year round by artificially controlling the cultivation environment (e.g., light, temperature, humidity, carbon dioxide concentration, and culture solution), allowing growers to plan production. By controlling the internal environment, plant factories can produce vegetables about two to four times faster than by typical outdoor cultivation. In addition, as multiple cultivation shelves (a multi-shelf system) are used, the mass production of vegetables in a small space is facilitated. There are some advantages of the plant factory, such as year-round crop production, no weather-related crop failures due to droughts, floods, pests, can be Installed on non-farmland areas, such as industrial parks and vacant stores in shopping districts, grow safe, high-quality agricultural produce with no or minimal pesticide use, possible to employ novice farmers due to the light workload and the ease of standardizing procedures, comfortable work environment in which the elderly and people with disabilities can work with easy. Also the plant factory has some disadvantages, such as high energy costs and facility installation costs, cultivation technology yet to be established, lack of human resources with both cultivation skills and facility management skills, limited types and varieties of crops available for production. The project is aimed at developing and promoting science-based agriculture independent of experience and intuition. They represent the introduction and incorporation of technologies that developed country has developed to date, including those in manufacturing, environment monitoring and control, computers, and artificial light, in the domain of agriculture. We are trying to use those technologies to triple crop yields and double farmer’s income

    荔枝園的土壤水分管理

    No full text

    Studies on the Precise Fertilization and Irrigation for High-Quality Tropical Fruit Production

    No full text
    本研究之目的係針對果樹產業的現代化經營需要,建立蓮霧、芒果、印度棗三種果樹的精準施肥及自動化灌溉管理技術,期能利用水肥管理技術,達到生產目標;目前仍有些關鍵技術必須突破;其一,國內熱帶果樹的施肥推荐,仍然粗放;其二,雖有多年的研發,然而啟動灌溉所使用的感測器僅有張力計一種,對局限灌溉(localization irrigation),土壤水分變異大的果園並不適用。本研究擬探究: 1. 蓮霧、芒果、印度棗三種果樹,在不同生育期,礦質養分之需求情形。 2. 建立肥灌技術。 3. 研發自動灌溉通用感測器。此外,太陽能供電系統發展快速,擬進行評估其在肥灌系統中成為替代電源之可能性。 The purpose of this study is to establish the precise fertilization and irrigation techniques for wax apple, mango as well as Indian jujube. In this study establishing of fertigation program in an orchard equipped with drip irrigation facilities is a terminal goal, not only to ensure production of high quality and yield of crops but also to reduce fertilizer and water use. Then, the cultural system will be optimized in accordance with economic or environmental concerns. The establishment of automatic irrigation program is an object of here, also. In this, on line detection techniques of plant water requirement will be compared and be used in the filed water application. After those, the employment of solar energy as an energy source in water pumping jobs will be evaluated

    水旱田輸作制度與水稻田永續利用

    No full text

    Study of Applying Hydrologic Budget Model on a Field Scale Simulation of Soil Moisture

    No full text
    本研究針對目前台灣水資源的管理趨勢及農業部門用水的限制,在現今農田水利會持續執行渠道灌溉的條件下,透過簡單的動態土壤水分平衡模式,掌握田區土壤水分含量即時的變化情形,做為灌區水源調配之依據,以期能夠以符合經濟效益的方法節用水資源,使台灣農業的生產朝向有利環境保育的正面方向發展。模式需要的氣象資料僅限於雨量及蒸發量。土壤及作物相關的模式參數,則利用田間資料反求。同時嘗試馬可夫一階模式,利用其可以藉由三維資料的掌握化為各土層在平面上的變異及在垂直方向的相關。達成以一維的模式來代表田間土壤水分的三維分佈特性。 首先,本研究特從文獻著手,對作物的需水特性、理論模式的發展,以及相關的土壤物理性質,做一回顧,作為本論文之學理研究的發展依據;其次從一般較少處理的田間坵塊尺度,研究土壤水分含量的變異特性,特點在於跨出以定點研究土壤水分管理的傳統思維方式,建立以田間園區坵塊為單位的水分管理方向。這一尺度的建立預期可對區域性大尺度的水資源管理,提供發展基礎。 水分收支平衡模式建立在土壤水分含量隨時間變化量等於水分進出根域,即地表以下60公分深土體,其中水量的差額,入滲水量之計算是以農地計劃排水量為基礎,由降雨量減去逕流量求得。水分在土壤中的傳輸以及根域受毛管支持水的輸水補給,本文認為是與根域土壤含水量(W)呈線性相關,即毛管輸水補給量G=Ka(W-Wfc),Ka為導水速率常數,Wfc為當地狀況條件下根域土壤之田間容水量。農地蒸發散量ET可以由作物係數Kc與潛勢蒸發量ET0求得,即ET=Kc×ET0。Kc隨時間變化之函數為作物係數曲線;玉米生育第一階段為葉面積指數<1或作物覆蓋率未達10%時,此時期Kc值為最小常數;葉面積指數≧3時或作物覆蓋率達70-80%以上時為玉米生育第三階段,此時期Kc為最大常數值。玉米生育劃分為四個階段,其作物係數均以線性方程式來表示。水分收支平衡模式,需要雨量、蒸發量資料,以及Ka、Wfc參數。Ka及Wfc參數值可以由作物生育第一階段時期,利用田間資料求取,惟模式應用時需考慮參數求取時之土壤含水量範圍。本文利用嘉南農田水利會灌溉試驗中心之77年春作,玉米灌溉試驗的兩個不同灌溉時間的處理,所得到的田間土壤水分含量變化的資料,進行模式參數之求取及玉米田土壤水分含量之模擬研究。 結果顯示,在模式建立與驗證上,利用玉米生育初期,0-26天葉面積指數小於1 (LAI<1)的田間調查資料可以順利取得模式的三個參數,分別是Kc,作物係數參數;Ka,土壤導水參數;以及Wfc,係當時環境下之田間容水量。利用參數,配合雨量、灌溉量、蒸發量、作物係數曲線,則可以模擬不同處理狀況下玉米全生育期之土壤水分含量。求得調查值與推估值的直線相關,A及B兩處理其調查與推估值直線迴歸的相關係數R2分別為0.94與0.92均達顯著水準。研究工作顯示,模式可以有效模擬的土壤水分範圍,自93mm至199mm,而且需要的參數極少,參數之取得極為方便且經濟,是可以立即應用在本省耕地上,做為水分管理之工具。 馬可夫一階模式(Marcov Lag-one model)可以考慮三維資料中垂直方向之相關性與平面中存在的變異情形,在本文中則是指各土層水分含量在平面分佈上的平均值與標準偏差,以及上下相鄰土層的直線相關係數。在模擬時,由隨機變數的函數來掌握平面的統計特性。 馬可夫一階模式之測試,乃利用農委會農試所16號田83年秋作玉米田土壤水分含量調查資料。期望時間序列模式得以掌握田間土壤水分之分布及變異特性。結果顯示在降雨的狀況下,0.35公頃農地土壤水分含量的變異係數最高僅達15%,然而經過局部區域未潤濕之灌溉處理後,可將田間土壤含水量的變異係數升高至40%,再逐漸降為20%上下。灌溉處理以後,相鄰土層土壤水分含量的直線關係趨向明顯,直線迴歸係數在0.9上下。 綜合全生育期土壤水分含量,0-15與15-30公分土層的土壤含水量間存在直線相關,R2值為0.7388;然而15-30與30-60公分土層土壤含水量直線相關的R2值則為0.7406。利用模式產生之資料仍保有原土層之族群特性,據此可以推論在大尺度狀況下,土壤水分含量變異係數夠大時,馬可夫一階模式配合蒙地卡羅方法可掌握田間土壤水分含量之分佈及變異特性。 由研究工作所得結果可以知道 (1) 由氣象及土壤水文資料,利用簡單的土壤水分收支模式,可以即時地預測根域土壤水分含量。 (2) 馬可夫一維模式可以掌握田間土壤水分三維特性的變化情形。The purpose of this study is to establish a hydrological budget model for the simulation of variance of soil moisture in southwest area of Taiwan. Parameters of climate data required are limited only to precipitation and evaporation, while those of the correlation of soil and crop are derived from field survey and simple statistics analysis. Meanwhile, attempt is made using Marcov Lag-one Model, that could well handle three- dimensional data of the horizontal moisture variance in soil layers and their vertical correlation, to formulate an one-dimensional model to present the three- dimensional distribution of moisture in a specific field soil. The hydrological budget model is based on the assumption that moisture content varying with time is equivalent to the water deficit(due to flow in and out)of root zone(60cm depth in a solum), while on the basis of planned drainage amount of water in field ,the amount of infiltration water is derived from the amount of precipitation minus run-off. In areas of southwest Taiwan, water movement in a solum and water supply to root zone by capillary water are observed linearly correlated with soil moisture content(W), i.e., G= Ka (W-Wfc), Ka indicating hydraulic conductivity constant and Wfc representing field capacity in situ. Field evaporation(ET)is obtained from crop coefficient(Kc)and potential evaporation(ET0), i.e., ET = Kc * ET0. Kc is a function according to change of time and defined as the crop coefficient curve, merged by four linear equations expressing crop coefficients of four commonly divided growth stages of corn. When at growth stage 1st, with leaf area index (LAI)smaller than 1 or cover rate of canopy still less than 10%, Kc is the value of the minimum constant. While at growth stage 3rd, with leaf area index larger than3 or cover rate of canopy attaining 70-80%, the maximum constant of Kc value is obtained. Essential for a hydrological budget model are parameters of Ka and Wfc, and data of precipitation and evaporation. Ka and Wfc can be acquired from field data at any growth stage as long as the range of soil moisture content is carefully considered. To study the simulation of soil moisture and secure the parameters for model, an irrigation timing experiment of spring crop of corn(draught period)was conducted in Chia-Nan area. The results indicate parameters of Kc, Ka and Wfc are readily available from field survey of the initial growth stage of corn(0-26 day, LAI<1)in Hsueh-Chia for the formulation and validation of model. Integrating parameters with data of precipitation, irrigation, evaporation and the crop coefficient curve, the soil moisture content of different treatments during the entire growth season can be simulated to get the linear relation between observed and simulated data. The correlation coefficients R2 of treatment A and B, 0.94 and 0.92, respectively, are both extremely significant. Analysis of the hydrological budget shows the precipitation of 273 mm in 1988 spring crop is sufficient to meet the demand of evaporation, which could even be 1.1 times its potential evaporation at the culmination of growth. The Marcov Lag-one Model enables consideration of three- dimensional data of the horizontal moisture variance in soil layers and their vertical correlation. The mean value and standard deviation of the horizontal distribution of soil moisture content in every soil layer are included and considered in this text. Furthermore, the coefficients of linear relation between neighbor layers are also calculated in the study. Random variables or numbers handle the characteristics of horizontal statistics, when simulating. Validation of the Marcov Lag-one Model is carried out with soil survey of field No.16 in Taiwan Agricultural Research Institute. It indicated under conditions of rain and irrigation the maximum variance coefficient of soil moisture content in field of 0.5 hectare was 15%, while that under conditions of partially wet and partially remain drought could reach over 40%. Through assessment of soil moisture content during the entire growing season, linear correlation was found between layers of 0-15 and 15-30 cm, and also between layers of 15-30 and 30-60 cm, with coefficients R2 of 0.7388 and 0.7406, respectively. Data generated from the Marcov Lag-one Model have advantages of maintaining population features of original soil layers and existence of linear relation between two neighbor layers. Therefore, on a large field scale, the Marcov Lag-one Model combined with Monte Carlo Method can be expected to handle the variance and distribution of soil moisture content in field, as long as the variance coefficient is large enough to locate the correlation between every two neighbor layers. Readjustment use of field land is quite crucial to sustainable agricultural development in Taiwan. It is convinced that facilities design of irrigation and drainage, fulfilling requirements for environmental protection, once introduced will spark great change in current environment of soil water. Long-term fallow is not only for ecology reason but contributes to more benefit of conservation of water resource than that of paddy. Quantitized assessment of such benefit is just made a start. As experiments have indicated, greenmanuring and pasturing on fallow land gained higher speed of biomass accumulation, also resulted in larger capacity of infiltration than upland rice and paddy.封面 圖次 表次 中文摘要 英文摘要 謝誌 符號說明 第一章 文獻研究 一、 研究目標與方向 二、 作物需水量 三、 模擬模式在土壤環境上之應用 四、 土壤物理性質之變異 第二章 文獻研究 一、 前言 二、 水分收支平衡模式結構 三、 模式之驗證方法 四、 結果與討論 五、 結論 第三章 田間尺度三維土體水分轉為一維序列模式研究 一、 前言 二、 材料與方法 三、 結果與討論 四、 結論 第四章 總結 參考文獻 附錄一 附錄二 附錄

    各種氨基酸對用鈣伊萊石為觸媒合成腐植酸產量成份與性質之影響

    No full text
    本研究工作之目的乃探討不同氨基酸在鈣伊萊石觸媒下,對合成腐植酸產量及性質之 影響。 不同氨基酸處理,加鈣伊萊石為觸媒者,其腐植酸產量較無鈣伊萊石觸媒者高。不同 處理中觸媒合成腐植酸受不同氨基酸影響而有顯著差異。Tryptophane Tyrosine> Arginine>Histidine Lysine Phenylanlanine>Glycine Leucine Blank。 由腐植酸含氮量計算參與反應之氨基酸摩爾數,多寡亦不相同。順序為:Ryrosine> Tryptophane>Phenylanalanine Histidine Lysine>Arginine>Glycine Leuci- ne。 加入鈣伊萊石處理者,均生成腐植酸一伊萊石複合體,複合體結合之腐植酸量,與溶 液最初成份之間存有關連。不同氨基酸處理其結合之腐植酸量有顯著差異。 將合成腐植酸被伊萊石吸附,不同氨基酸處理合成之腐植酸被吸附之量不存在明顯之 差異,且遠低於複合體所結合之腐植酸量

    合理化施肥之土壤水分管理

    No full text
    合理化施肥就是最經濟合理地施用肥料,不做無謂的浪費,所施用的肥料能效率地被利用。然而肥料施入土壤中後可能因為淋洗、沖蝕以及揮發而損失,傳統施肥方式的狀況下,地上的植物對氮肥的利用率,常常不到 40%,淋洗至根層以下的氮肥量,將會污染地下水使水質變壞,可能高達 15%。被作物吸收的合理化施肥就是最經濟合理地施用肥料,不做無謂的浪費,讓所施用的肥料能高肥料,又可能因為要素之間的比率不恰當,而對作物的發育、生產量或是產物的品質有不良的影響。所以,合理化的施肥是需要針對土壤特性、作物品種及生育階段、氣候、整枝修剪、敷蓋與覆蓋與否、灌溉方式等等不同的情況,來做機動性的調控,以適當比率及適當量的肥料在適當的時間施下,是一個不容易達成的目標

    Rational use of fertilization and nutrient management in orchards

    No full text
    國內水果生產肥料投入量極高,又未能有效地的執行土壤分析與植體營養診斷工作;在果農追求高產、高品質的企圖下,難免促成過度施肥的不當操作。調查資料顯示,國內若干果園存在土壤養分偏頗現象,表土酸化、土壤有效性磷偏高、土壤鉀素含量偏低等;同時果園葉片營養診斷資訊顯示,氮、磷濃度偏高而鉀、鎂濃度偏低。 評估果園營養狀態的工具,主要是土壤和植物體的調查與分析。多年生果樹的根系,相較於一年生的作物而言,分布在比較深的土壤剖面內,根在個別土層的分布與型態受該土層土壤肥力的影響而有不同,此外園區內土壤的變異也大,一般很難單獨依賴土壤的分析資料做為營養監測或是施肥推薦的工具。 利用葉片分析方法,診斷作物營養狀態,以其葉片取樣容易且變異較小,而成為較佳的方法。然而評估多年生木本果樹礦質要素的組態,原本就是一種挑戰,因為許多熱、亞熱帶果樹具有複雜以及易變的物候循環(phenological cycles),影響果樹礦質要素的吸收與運移,加以果樹深廣的根系分布,使得例常性的表土分析無法提供足夠的資訊來評估土壤的供應量;另此樹體的組織與器官可以貯蓄礦質要素,緩衝許多短期的礦物質缺乏。雖然如此,累積長期多年的植體與土壤的分析資料,仍是建立營養管理對生產的影響關係的重要方法。 營養狀況之診斷固然不易,檢討改善營養管理以及設立合理化的施肥計畫更屬困難,唯有依據科學的原則與實際田間研究才能做好。施肥的最佳管理操作除了從經濟面考慮之外,同時必需考慮社會與環境。除了增加收益,同時需要維持或增進土壤品質、降低水環境之污染以及維護空氣品質。因而必須設立效能目標,研發施肥技術,以增進養分的效能兼顧產值與環境,建立合理化施肥管理體系。 為求增進肥料的效能、提高作物生產、增加收益、維持或增進土壤品質、降低污染、保護環境品質,建立果園營養診斷體系與營養管理方法亟待努力。本文謹就土壤肥力分析與植體營養診斷、施肥以及肥灌(fertigation)方法加以說明,期能對果樹栽培有所助益。 High fertilizer input and inefficient and limited use of soil test and plant analysis for nutrient diagnosis resulted in soil acidification and unbalanced soil nutrient status such as relatively high soil available phosphorous and low soil potassium content. Leaf nutrient diagnosis information also indicated very high content of nitrogen and phosphorous with relatively low content of potassium and magnesium prevailingly observed in Taiwan orchards. As fruit tree is perennial crop with root system distributed deeper within soil profile, thus be affected by soil fertility of different layers. Furthermore, the variation of soil fertility and property are large in orchard, fertilization recommendation and nutrient monitoring can not be solely dependant on soil testing. Hence plant analysis with leaf sampling of less variation seems to serve as a better tool for nutrient diagnosis. Yet, there are challenges and limitation for plant analysis, because complex and instable phenological cycles influencing uptake and translocation of inorganic nutrient, difficult assessment of soil supply capacity by routine soil test due to wide and deep root system and plant tissue or organs’ storage of nutrients buffering short term shortage of inorganic nutrient occurred in tropical and subtropical fruit trees. Nevertheless, yearly long-term accumulated analytical data still serve as an important tool to understand the relation between nutrient management and fruit production. Field study and research is in much need to be conducted to improve nutrient diagnosis .Establishment and promotion on rational use of fertilization and nutrient management have to deal with both commercial requirements and demands of social and natural environment. Not only upgrading the efficiency of fertilizer, raise the income and crop yields but efforts have to be made to maintain soil quality, reduce water and air pollution and conserve better quality of natural environment. Nutrient diagnosis of soil test and plant analysis together with fertilization methods including fertigation are to be discussed in detail looking forward to be beneficial to fruit cultivation

    The Integrated Management on Strawberry Production in Organic Farming System

    No full text
    有機農業是一世界風潮,以最主要精神是在國家規定之規範下進行之一生產系統,在此系統必須同時兼顧環境品質及生態平衡。本研究目的在建立台灣各草莓產區有機栽培標準化綜合管理模式,包括有機農業在草莓栽培上土壤品質標準、土壤改良資材、肥料資材、病蟲害防治資材之選擇及使用。 本計畫分年目標:95年度:本年度進行有機草莓栽培上土壤性質分析、肥料 資材及用量、覆蓋資材之影響、病蟲害防治建議。96年度:依95年度成果進一步修改使有機栽培標準化綜合管理模式更適合農民使用,並作田間示範觀摩。97年度:依已建立模式推廣所有種草莓地區。 本研究由一工作團隊進行:一、進行有機草莓苗之栽培需要選擇適當地區栽培以健全有機栽培制度之建立。此部分由吳添益、蔡政賢負責田間控管外其他肥料及病蟲害管理由團隊其他負責人提供建議並評估可行性。二、.草莓為旱作作物,前作作物選擇若能降低或克服某些草莓之病蟲害原,則更容易進行病蟲害防治,降低生物性或物理性防治病蟲害之花費成本。因此在草莓主要生產區(苗栗縣大湖)之有機耕種農田,種植前做以下各種研究。三、研究植物性材質(稻草)、塑膠布覆蓋方法對雜草防治之效果。農委會苗栗改良場吳添益副研究員負責此部分及田間管理。草莓有機栽培之水分管理配合有機液肥之隨灌溉水提供草莓追肥,此部分由農業試驗所農業化學組向為民副研究員負責。有機草莓田土壤性質診斷及養分變化研究部分由中興大學黃裕銘副教授負責。草莓栽培氣候條件之選擇相當重要,但是栽種地區土壤問題需要診斷出來並給予改良則對有機栽培之成敗有相當重要之關鍵性,因此需要作了解。另外不同耕作制度會影響土壤中微生物族群及土壤性質而影響作物養分在土壤中之轉變速率,因此需要研究了解,才能給予明確之施肥制度。四、草莓之生產期長,且一面開花一面成熟,其基肥追肥之施用材料及配方和其他作物不同,需要利用地區性較便宜資材以建立之,另外追肥是否需要有機液肥之補充及有機液肥之配方與製作亦相當重要,因此需要研究。五、在不同耕作制度、覆蓋及施肥狀況下,有機草莓之病蟲害發生狀況需要明確追蹤調查並提出各種解決方法,尤其草莓栽培最嚴重之灰霉病和紅蜘蛛之危害需要從田間管理及肥料選擇及土壤生態營造之綜合管理著手成功率最高,此部分由農委會農業藥物毒物試驗所楊秀珠研究員負責。六、研究時程及進度本研究95年度及96年度各研究主題不變但是更進一層分析所建議技術之穩定性,97及98年進行推廣及研討會分享研究成果給國內外研究人員、農民及消費大眾參考。 本研究.預期效益:一、建立有機草莓生產標準模式。二、提高有機草莓之品質及可靠性。三、提升觀光產業。四、提升農民收益。The organic farming has been dramatically increased world wide. It is a production system under governmental orders or laws, and enchanced the environemnetal quality, including soil, water, and ecosystem. The aim of this study is to establish an intergrated organic farming system for growing strawberry in Taiwan, including soil quality, soil amended materials, fertilizers, pest control materials, and speicific managing practices adopted for different regions. The aim will be approached by several years. In 2006, experiment will be conducted in Mioli, the most famous strawberry production county. The soil properties will be analysed and set an appropriate system including soil amendments, fertilizers, mulching materials, water control, and pest survey and controls. The system conducted in 2006 will be modified in 2007 if it is necessary, and a field demonstration will be hold to open to farmers and any publics. The models will be extended to other regions with suitable modification according to regional natural environments. This project will be conducted by a team of researchers from different institutes including many soil scientists and plant pathologists. The field managements will be charged by Mr. Tsai, Dr. Tsai, and Mr. Wu; the irrigation and water control is charged by Mr. Hsiang; The pest control is charged by Dr. Young and Dr. Chang; and the fertilizer is charged by Dr. Huang. The rice straw and PVC film are used as mulching materials for weeds control and decrease the gray mould. The harvest seasons is long and the flowering stages covering fruit ripening stages, so its fertilization system will be very different to other tree fruit system. Some results and benefits will be derived from this study: An appropriate integrated management system will be established for farmers to follow up with stable production and quality of strawberry in organic system. Which returns the farmers with good farm-gate price and profits and enhanced the sightseeing population for all regions
    corecore