30 research outputs found

    Energy storage via storing flood in abandoned mines and low temperature heat energy utilization from mine water

    Get PDF
    The utilization of underground space in abandoned mines is a key direction supported by the coal industry. By combining underground space utilization, flood storage, and heat supply in winter, this paper proposes a comprehensive utilization model of flood storage and heat extraction in the abandoned mine, based on three technologies: ground flood diversion, underground flood storage and heat pump. This paper addresses the concept, key technologies and scientific issues of the model. The distribution of abandoned mines in China and its relationship with precipitation distribution were analyzed. The potential for flood and energy storage in abandoned mine was also studied. Results showed that 13 provinces, including Anhui, Henan, and Shandong province, can utilize approximately 60 million cubic meters of underground space and store nearly 6 volumes of West Lake water, making it suitable for engineering demonstration of flood storage and heat extraction in abandoned mines. Among them, five abandoned mines in Huainan mining area can utilize approximately 300 000 cubic meters of underground space, with energy storage capacity of up to 94 500 GJ that can meet the heating demand of 210 000 square meters. Taking Qishan Mine as an example, a scheme was designed based on ground flood diversion and storage, underground water storage, and mine water extraction and utilization. According to preliminary calculations, the heating power of Qishan Mine can reach 6 835 kW which can provide heating for 136 700 square meters of buildings, reduce carbon dioxide emissions by about 5 330 tons, and save 3.507 5 million yuan. This demonstrates the feasibility of flood and energy storage in abandoned underground space. Research showed that the comprehensive utilization model of flood storage, energy storage, and heat extraction in abandoned mines can not only effectively utilize the underground space of abandoned mines but also alleviate local flood disasters during the flood season. It can develop low-grade clean energy in mine water and has certain significance in improving the added value of underground space utilization in abandoned mines and promoting the utilization of underground space in abandoned mines

    Relaxed selection underlies genome erosion in socially parasitic ant species

    Get PDF
    Inquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex, we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches

    Adaptive Multi-Type Fingerprint Indoor Positioning and Localization Method Based on Multi-Task Learning and Weight Coefficients K-Nearest Neighbor

    No full text
    The complex indoor environment makes the use of received fingerprints unreliable as an indoor positioning and localization method based on fingerprint data. This paper proposes an adaptive multi-type fingerprint indoor positioning and localization method based on multi-task learning (MTL) and Weight Coefficients K-Nearest Neighbor (WCKNN), which integrates magnetic field, Wi-Fi and Bluetooth fingerprints for positioning and localization. The MTL fuses the features of different types of fingerprints to search the potential relationship between them. It also exploits the synergy between the tasks, which can boost up positioning and localization performance. Then the WCKNN predicts another position of the fingerprints in a certain class determined by the obtained location. The final position is obtained by fusing the predicted positions using a weighted average method whose weights are the positioning errors provided by positioning error prediction models. Experimental results indicated that the proposed method achieved 98.58% accuracy in classifying locations with a mean positioning error of 1.95 m

    Study on Preparation and Performance of CO<sub>2</sub> Foamed Concrete for Heat Insulation and Carbon Storage

    No full text
    Environmental problems caused by large amounts of CO2 generated by coal–electricity integration bases have raised concerns. To solve these problems, this study develops a CO2 foam concrete (CFC) material with both heat insulation and carbon fixation characteristics to realize CO2 in situ storage and utilization. In this study, a Portland-cement-based CO2 foam concrete (PC-CFC) with good thermal insulation performance and carbon fixation ability is prepared using carbonation pretreatment cement and a physical foaming method. The effects of CO2 on the compressive strength, thermal insulation, and carbon fixation properties of PC-CFC are studied. The internal relationship between the compressive strength, thermal insulation, and carbon fixation performance of PC-CFC is analyzed, and the feasibility of PC-CFC as a filling material to realize the in situ mineralization and storage of CO2 in the coal–electricity integration base is discussed. The experimental results show that the compressive strength of PC-CFC is significantly improved by CO2 curing. However, CO2 in the PC-CFC pores may weaken the strength of the pore structure, and the compressive strength decreases by 3.62% for each 1% increase in PC-CFC porosity. Using CO2 as a foaming gas and the physical foaming method to prepare CFC can achieve improved thermal insulation performance. The thermal conductivity of PC-CFC is 0.0512–0.0905 W/(m·K). In addition, the compressive strength of PC-CFC increases by 19.08% when the thermal conductivity of PC-CFC increases by 1%. On the premise of meeting the thermal insulation requirements, PC-CFC can achieve improved compressive strength. The carbon sequestration rate of the PC-CFC skeleton is 6.1–8.57%, and the carbon storage capacity of PC-CFC pores is 1.36–2.60 kg/ton, which has obvious carbon sequestration potential; however, the preparation process and parameters of PC-CFC still require further improvement. The research results show that PC-CFC has great potential for engineering applications and is of great significance for realizing carbon reduction at the coal–electricity integration base

    Effect of carbonation and foam content on CO2 foamed concrete behavior

    No full text
    Coal and electricity integration plays an important role in ensuring national energy security, but it still faces the challenge of carbon emission reduction. The development of in-situ CO2 sequestration and utilization technology for pithead power plants is an effective way to achieve low-carbon and efficient utilization of coal power. The preparation of foam concrete for mining using CO2 is a type of carbon capture, utilization, and storage technology featuring in-situ CO2 sequestration and utilization in pithead power plants and mine filling and sequestration. The purpose of this study is to evaluate the basic performance and carbon sequestration potential of Portland cement-based CO2 foam concrete (PC-CFC) as a mining material. In this study, PC-CFC was prepared through physical foaming and the carbonation pretreatment cement process. The influence of carbonation pretreatment time and CO2 foam content on density, strength, and carbon sequestration of PC-CFC was investigated. The experimental results showed that carbonation pretreatment could enhance the stability of CO2 foam in Portland cement and improve the CO2 foaming performance. With the extension of carbonation pretreatment time, the extend of dry density reduction decreases from 16.6% to 0.8%. A 60 min–90 min of carbonation pretreatment can achieve the best treatment performance. Carbonation pretreatment and CO2 foam can promote the degree of cement hydration, optimize the PC-CFC pore structure, and improve the compressive strength of PC-CFC. However, the PC-CFC material strength owing to the extended carbonation treatment time, which leads to well-developed vesicle distribution, has an overall decreasing trend. In addition, the 7 day (d) compressive strength of PC-CFC can reach more than 60% of the 28 d compressive strength, which has evident early strength characteristics. Extending the carbonation pretreatment time and CO2 foam content increased the PC-CFC carbon sequestration that ranged from 61.0 kg/ton to 85.7 kg/ton. The dry density of the PC-CFC material was significantly and positively correlated to the 28 d compressive strength and negatively correlated to the amount of carbon sequestration. In the case in which the best carbon sequestration effects is achieved, a single filling of the working face end can store ∼3929.31 kg of CO2; in the most economical condition, it can store ∼3642.79 kg of CO2. The conducted research provides new ideas for the low-carbon and green development of coal and electricity integration

    Characteristics of Dynamic Safety Factors during the Construction Process for a Tunnel-Group Metro Station

    No full text
    Dynamic safety factors during the construction of an overlapping tunnel-group metro station were studied in the framework of the strength-reduction finite element method. Based on the equivalent plastic strain and displacement of surrounding rock, its damage mode under typical excavation conditions was investigated. The aim of this investigation was to provide information for the design activities concerning the supporting system of the station and the pre-reinforcement of its surrounding ground. The accuracy of the model was assessed by comparing the ground settlements obtained from on-site monitoring with those from the numerical model. The analysis results show that the safety factor reaches the minimum when the No. 3 guide hole of the station hall is excavated. Thus, this is the most dangerous construction step. During this step, the plastic zone penetration phenomenon occurs in the surrounding rock, which is sandwiched between the hall and the platform of the station. In this case, both the deformation of the surrounding rock and the internal forces of the lining increase. The surrounding rock in the sidewall loses its stability. Thereafter, the primary support plays a role of stabilizing the guide hole

    Characteristics of Dynamic Safety Factors during the Construction Process for a Tunnel-Group Metro Station

    No full text
    Dynamic safety factors during the construction of an overlapping tunnel-group metro station were studied in the framework of the strength-reduction finite element method. Based on the equivalent plastic strain and displacement of surrounding rock, its damage mode under typical excavation conditions was investigated. The aim of this investigation was to provide information for the design activities concerning the supporting system of the station and the pre-reinforcement of its surrounding ground. The accuracy of the model was assessed by comparing the ground settlements obtained from on-site monitoring with those from the numerical model. The analysis results show that the safety factor reaches the minimum when the No. 3 guide hole of the station hall is excavated. Thus, this is the most dangerous construction step. During this step, the plastic zone penetration phenomenon occurs in the surrounding rock, which is sandwiched between the hall and the platform of the station. In this case, both the deformation of the surrounding rock and the internal forces of the lining increase. The surrounding rock in the sidewall loses its stability. Thereafter, the primary support plays a role of stabilizing the guide hole

    sj-docx-1-asp-10.1177_00037028231206191 - Supplemental material for Dynamic Multivariate Outlier Detection Algorithm Using Ultraviolet Visible Spectroscopy for Monitoring Surface Water Contamination With Hydrological Fluctuation in Real-Time

    No full text
    Supplemental material, sj-docx-1-asp-10.1177_00037028231206191 for Dynamic Multivariate Outlier Detection Algorithm Using Ultraviolet Visible Spectroscopy for Monitoring Surface Water Contamination With Hydrological Fluctuation in Real-Time by Qingbo Li, Xupeng Shao, Houxin Cui, Yuan Wei and Yongchang Shang in Applied Spectroscopy</p

    Genomic characteristics and comparative genomics analysis of Penicillium chrysogenum KF-25

    Get PDF
    BACKGROUND: Penicillium chrysogenum has been used in producing penicillin and derived β-lactam antibiotics for many years. Although the genome of the mutant strain P. chrysogenum Wisconsin 54-1255 has already been sequenced, the versatility and genetic diversity of this species still needs to be intensively studied. In this study, the genome of the wild-type P. chrysogenum strain KF-25, which has high activity against Ustilaginoidea virens, was sequenced and characterized. RESULTS: The genome of KF-25 was about 29.9 Mb in size and contained 9,804 putative open reading frames (orfs). Thirteen genes were predicted to encode two-component system proteins, of which six were putatively involved in osmolarity adaption. There were 33 putative secondary metabolism pathways and numerous genes that were essential in metabolite biosynthesis. Several P. chrysogenum virus untranslated region sequences were found in the KF-25 genome, suggesting that there might be a relationship between the virus and P. chrysogenum in evolution. Comparative genome analysis showed that the genomes of KF-25 and Wisconsin 54-1255 were highly similar, except that KF-25 was 2.3 Mb smaller. Three hundred and fifty-five KF-25 specific genes were found and the biological functions of the proteins encoded by these genes were mainly unknown (232, representing 65%), except for some orfs encoding proteins with predicted functions in transport, metabolism, and signal transduction. Numerous KF-25-specific genes were found to be associated with the pathogenicity and virulence of the strains, which were identical to those of wild-type P. chrysogenum NRRL 1951. CONCLUSION: Genome sequencing and comparative analysis are helpful in further understanding the biology, evolution, and environment adaption of P. chrysogenum, and provide a new tool for identifying further functional metabolites

    Fabrication of nanopillar crystalline ITO thin films with high transmittance and IR reflectance by RF magnetron sputtering

    No full text
    Nanopillar crystalline indium tin oxide (ITO) thin films were deposited on soda-lime glass substrates by radio frequency (RF) magnetron sputtering under the power levels of 100 W, 150 W, 200 W and 250 W. The preparation process of thin films is divided into two steps, firstly, sputtering a very thin and granular crystalline film at the bottom, and then sputtering a nanopillar crystalline film above the bottom film. The structure, morphology, optical and electrical properties of the nanopillar crystalline ITO thin films were investigated. From X-ray diffraction (XRD) analysis, the nanopillar crystalline thin films shows (400) preferred orientation. Due to the effect of the bottom granular grains, the crystallinity of the nanopillar crystals on the upper layer was greatly improved. The nanopillar crystalline ITO thin films exhibited excellent electrical properties, enhanced visible light transmittance and a highly infrared reflectivity in the mid-infrared region. It is noted that the thin film deposited at 200 W showed the best combination of optical and electrical performance, with resistivity of 1.44 &#215; 10&#8722;4 &#937; cm, average transmittance of 88.49% (with a film thickness of 1031 nm) and IR reflectivity reaching 89.18%
    corecore