93 research outputs found

    INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    Get PDF
    The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increased voltage gradient. The doped rare-earth oxides dissolved at the grain boundaries and the excessive doping reduced the voltage across the single grain/grain boundary from 2.72 V to 0.91 V. The poor electrical properties in a higher doping region resulted from the degeneration of grain boundaries and the decrease of block density

    Recent Studies Toward the Development of Practical Diets for Shrimp and Their Nutritional Requirements

    Get PDF
    Shrimp is a very important source of protein which is patronized by almost half of the world's population, and hence a very important specie in aquaculture. There is the need for increase in shrimp production worldwide to meet consumer demands. However, shrimp production is hampered by high cost of commercial feeds. Increase in prices of fish oil and fish meal has led to calls for their substitute. This calls for substitute has resulted in researchers studying the nutritional requirement of shrimp. The rationale for this article is to review the literature available on recent studies toward the development of practical diets for shrimps focusing on the nutrients required by different species qualitatively as well as quantitatively. This review highlights on nutrient requirements with respect to growth and feed utilization. Digestibility of nutrients used in shrimp diets is also accounted for in this article

    Cultivation of Drought-Tolerant and Insect-Resistant Rice Affects Soil Bacterial, but Not Fungal, Abundances and Community Structures

    Get PDF
    The impacts of rice varieties with stacked drought tolerance and insect resistance on soil microbiomes are poorly understood. Hence, the objective of this study was to investigate the effects resulting from the cultivation of the drought-tolerant and insect-resistant rice cultivar, Hanhui3T, on soil physical–chemical properties, and bacterial and fungal community composition. Soil samples of Hanhui3T and conventional rice varieties (Hanhui3 and Zhonghua11) were collected in triplicate at the booting stage, and bacterial and fungal population sizes and community structures were assessed using qPCR and Illumina MiSeq sequencing, respectively. The Bt protein concentration of Hanhui3T was significantly higher than that of Hanhui3 and Zhonghua11, while the pH of Hanhui3T was significantly lower. Bacterial population sizes and community composition were significantly different between Hanhui3T and Hanhui3 (or Zhonghua11), while no similar effects were observed for fungal communities. These differences suggest that the effect of Hanhui3T cultivation on bacterial community composition is stronger than the effect on fungal communities. Moreover, bacterial abundance was positively correlated to soil pH, while bacterial community structure variations were mainly driven by soil pH and Bt protein concentration differences. In conclusion, the abundances and structure of bacterial communities were altered in rhizosphere with Hanhui3T cultivation that changed soil pH and Bt protein concentrations, while fungal communities displayed no such responsiveness

    Transcranial Magnetic Stimulation Over the Right Posterior Superior Temporal Sulcus Promotes the Feature Discrimination Processing

    Get PDF
    Attention is the dynamic process of allocating limited resources to the information that is most relevant to our goals. Accumulating studies have demonstrated the crucial role of frontal and parietal areas in attention. However, the effect of posterior superior temporal sulcus (pSTS) in attention is still unclear. To address this question, in this study, we measured transcranial magnetic stimulation (TMS)-induced event-related potentials (ERPs) to determine the extent of involvement of the right pSTS in attentional processing. We hypothesized that TMS would enhance the activation of the right pSTS during feature discrimination processing. We recruited 21 healthy subjects who performed the dual-feature delayed matching task while undergoing single-pulse sham or real TMS to the right pSTS 300 ms before the second stimulus onset. The results showed that the response time was reduced by real TMS of the pSTS as compared to sham stimulation. N270 amplitude was reduced during conflict processing, and the time-varying network analysis revealed increased connectivity between the frontal lobe and temporo-parietal and occipital regions. Thus, single-pulse TMS of the right pSTS enhances feature discrimination processing and task performance by reducing N270 amplitude and increasing connections between the frontal pole and temporo-parietal and occipital regions. These findings provide evidence that the right pSTS facilitates feature discrimination by accelerating the formation of a dynamic network

    Oceanic and ecological response to native Typhoons Cempaka and Lupit (2021) along the northern South China Sea continental shelf: comparison and evaluation of global and regional Operational Oceanography Forecasting Systems

    Get PDF
    The Global Operational Oceanography Forecasting System from the Mercator Ocean (MO) and the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2) were compared and evaluated using in situ and satellite observations, with a focus on the oceanic and ecological response to two consecutive native typhoons, Cempaka and Lupit, that occurred in July–August 2021. Results revealed a better simulation of the chlorophyll a (Chla) structure by SCSOFSv2 and a better simulation of the temperature profile by MO in the Pearl River Estuary. In addition, SCSOFSv2 sea surface temperature (SST) and MO Chla variations corresponded well with observations along the northern SCS shelf. Simulated maximum SST cooling was larger and 2–3 days earlier than those observations. Maximum Chla was stronger and led the climatological average by 2 days after the typhoon passage. Typhoon-induced vertical variations of Chla and NO3 indicated that different Chla bloom processes from coastal waters to the continental shelf. Discharge brought extra nutrients to stimulate Chla bloom in coastal waters, and model results revealed that its impact could extend to the continental shelf 50–150 km from the coastline. However, bottom nutrients were uplifted to contribute to Chla enhancement in the upper and middle layers of the shelf. Nutrients transported from the open sea along the continental slope with the bottom cold water could trigger Chla enhancement in the Taiwan Bank. This study suggests considering strong tides and waves as well as regional dynamics to improve model skills in the future

    Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Get PDF
    In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc) is added to the middle arc (M-arc) in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding

    Observation of pulse trapping in a near-zero dispersion regime

    No full text
    We report pulse trapping in passively mode-locked fiber lasers operating in a near-zero dispersion regime. Two polarization components of vector pulses have different central wavelengths while copropagating as a unit in fiber lasers. The vector pulses exhibit smooth Gaussian spectral profile without any sidebands, qualitatively distinct from those observed in net-anomalous and net-normal fiber lasers. Numerical simulations suggest that the pulse trapping depends not only on fiber birefringence and cavity dispersion but also on saturable absorption effect. The experimental observations are in good agreement with the numerical simulations. (C) 2012 Optical Society of Americ

    Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating

    No full text
    We have proposed and numerically investigated an all-optical switch based on a metal–insulator–metal waveguide with graded nonlinear plasmonic gratings. The influences of grating depth and refractive index of a Kerr nonlinear medium on the transmission of the switch are exactly analyzed by utilizing transmission line theory. The finite-difference time-domain simulation results show that the highly compact structure possesses excellent switch function by tuning the incident electric field intensity. In addition, the simulation results show that this all-optical switch has an ultrawide operating frequency regime and femtosecond-scale response time (~130 fs). Such a switch can find potential applications for all-optical signal processing and optical communication
    corecore