30 research outputs found
Application of Soil Information on Agricultural Production
土地資源為人類賴以維生之自然資源,它提供了農林業生產、排水灌溉、休閒娛樂 等功能。農委會農業試驗所多年來累積的土壤調查、土壤肥力等資料庫,結合自然環境 與生物因子對農作物生產管理的評估分析, 可提供從國家決策分析、地區性農地利用專業規劃、或是全臺各地基層農民使用等不同 範疇之應用。
Soil is a vital resource for human living. It provides multi-functions, including food and timber production, irrigation and drainage, and landscape and recreation, in agricultural sector. Taiwan Agricultural Research Institute has collected soil information for more than 90 years. The paper presents examples of soil information application from farmer to national decision maker levels on natural resources management and agricultural production
A Study on Parameter Indentification in Nonlinear Reaction System
本研究針對溶質輸送現象及表面化學中,最常被引用之非線性吸附反應為
對象,利用統計和數值方法研究模式參數鑑定的方法,檢視各種傳統鑑定
方法可能隱含的誤差,並提出改進的方法,以有效規範系統反應行為。同
時,為擴展模擬田間吸附反應系統的應用範圍,進一步建立分布函數模式
,簡化三維不均質性土體中模式參數使用之不便,以期提高在大尺度土壤
行為分析之可行性。
研究中使用之土壤樣品為大度山紅壤,採樣之初即考慮代表三維土體性質
的分布,而採取不同位置不同深度的217個樣本。研究工作分為三個部份,
首先就重金屬在各別土樣中的平衡吸附現象進行研究,此為非線性代數模
式系統。其次由平衡吸附研究的結果選取吸附能力差異大的土樣,繼續對
重金屬在土壤中的動態吸附反應參數進行鑑定,此係非線性微分模式系統
。最後利用吸附常數隨土層深度的變化可視為一非線性序列系統,故以馬
可夫模式建立隨機序列函數,並以蒙地卡羅法檢視其適宜性。
在平衡吸附反應方面,由研究結果得知,在平衡吸附反應中,以Langmuir
吸附模式模擬平衡系統的吸附量時,以顯式方程式之模擬效果較佳。傳統
直線化方法雖有不錯的結果,但以非直線回歸參數鑑定方法所求得的模式
參數,更具代表性且更穩定。反應系統的液固比會影響最後平衡時在固相
之吸附量,液固比愈大,單位固相之吸附量愈大,因此應將總體密度及含
水量引入吸附模式中以反應此種機制才合理。在動態吸附模式之參數鑑定
方法上,由研究結果得知,三種模式所得之曲線代表性均高,但以擬二級
吸附反應(pseudo second order adsorption reaction)在部份試驗數據求
得之參數,竟有最大吸附量小於觀測得到的吸附量,或反應速率常數k1/k2
大於1之狀況,顯示擬二級吸附反應不能完全代表土壤與離子吸附反應的現
象。經加入反應級數修正後的模式,則均未發現此不合理的狀況。最後以
馬可夫一階模式掌握類似三維資料庫在平面上的變異,及在垂直方向的相
關,可減少三維模式模擬的龐大運算工作。經由蒙地卡羅法模擬各深度土
壤吸附常數的結果證實以一維序列函數模式可以模擬三維土體資料的分布
,減少三維模式模擬的龐大運算工作,並增加未來許多大尺度田間模式研
究的可行性。The purpose of this study is to attempt to inspect and improve
errors hiding in some kinds of traditional identification for
regularizing system reaction behaviors effectively. We use the
nonlinear absorption reaction model that is often quoted in
solute transport and surface chemistry to study the parameter
identification by statistics and numerical.
As for the parameter identification of equilibrium absorption
model, we use the isotherm absorption model to compare some
usable parameter identification methods with 217 samples on
absorption experiment. The purpose is to find the most efficient
parameter identification method, analyze the status of solute/
solid ratio in absorption reaction, and how to reduce the
simulated error in absorption reaction by isotherm absorption
model.
We adopt Markov one-lag model to reduce the huge operation of
model simulating of model parameter by controlling the horizontal
variance and the vertical correlation of pseudo three dimension
database. The purpose of the study of the reaction parameter
distribution is to simplify the complexity of model simulation
in three dimension anisotropic soil body.
From the results show that it is ideal to use accumulative
probability distribution function of Markov one-lag model to
generate random number from the simulation results. We can use
the normal distribution to generate random number if meaningful
accumulative probability distribution function could not be
gotten by limited data. It can be simulated bynormal
distribution method if the measurement data are presented as
log-normal distribution. No matter what method is used, the more
often we simulate, the more we control the statistic
characteristics of database. Degradation of database does not
influence the estimation ofmean and relation coefficient, but
increase the error of estimated standard variation. That is,
reducing sample sizecan maintain vertical relation, but can
not control horizontal variability.封面
目次
摘要
abstract
誌謝
圖次
表次
符號說明
第一章 緒論
第二章 前人研究
第三章 平衡模式之參數鑑定方法研究
一、前言
二、研究材料與研究方法
(一)採樣區域描述
(二)試驗設計與實驗方法
(三)參數鑑定方法
三、結果與討論
(一)液固比之影響
(二)模式模擬吸附量之探討
(三)參數鑑定方法之比較
四、結論
第四章 動態模式之參數鑑定方法研究
一、前言
二、研究材料與研究方法
(一)研究材料
(二)試驗設計與實驗方法
(三)模式理論
(四)參數鑑定方法
三、結果與討論
(一)三種模式對吸附反應的代表性
(二)不同起始反應濃度對參數之影響
(三)求取參數的限制條件
四、結論
第五章 反應參數在三維不均勻土體之分布模式研究
一、前言
二、研究材料與研究方法
(一)研究材料
(二)模式理論
(三)研究方法
三、結果與討論
(一)各層次模式函數參數之建立
(二)資料庫縮減之影響
(三)模擬結果與原料庫之比較
(四)模擬次數的效應
(五)以縮減後的資料庫建立模式參數的模擬結果
四、結果
第六章 總結
參考文
Applications of GIS, GPS, and DSS in Precision Agriculture
精準農業乃是針對農田及植栽的變異性給予最適當的耕作決策與處理,以減少資財之耗費,增加收益並減輕環境的衝擊。傳統之農耕方式將整個田區之作物、土壤等特性視為均一,故無論是灌溉水量、肥料或是農藥之施用量,均是針對整個田區施用。精準農業則針對田區間各種作物、土壤、環境因子具空間變異之特性,利用先進的電腦、通信與自動化科技,配合適當時間、空間尺度之田間調查作業及地理資訊系統、空間變異分析模式,以精確地且全面性地掌握田區作物、土壤與環境特性,進而經由作物模式、決策分析模式,以決定最佳之耕作策略及產量預測,並利用地理資訊系統建立各種空間分布圖層。
Agriculture is becoming more of a system and it is also becoming more of a business. As a system, the constituents involved with arid affected by precision agriculture are heading towards a direction of more directed interaction driven by the data which can be provided. The constituents of precision agriculture include the farmer, agribusiness, the agricultural equipment industry, university researcher, and the general public. As the process becomes more systems oriented, we can expect the data derived from precision agriculture to form the foundation some new opportunities including research. It is also reasonable to expect that these data will provide information for legal decisions, government regulation, and environmental accountability. Cultural practices will evolve from precision agriculture that provide more opportunities for changing the growth and development of the crop during the growing seasons. Crop models will serve as a “blueprint” for the potential growth and development of the crop at a point in time. Management models will be developed to perform whole-farm management, as a system of equipment, environmental factors, crops grown, and crop markets. To deal with variations prevailing in fields and crops of planted, precise agriculture provides the best approach decision-making of farm management to raise income, reduce cost waste as well as lessen the impact on the environment. In conventional agriculture, features of crop and soil in the field were frequently regarded as homogeneous; hence, irrigation, fertilizers and pesticides were applied very uniformly. While precision agriculture copes with spatial variations of crops, soil, and environment in field by technologies of computer, communication and automation. That is to incorporate the field survey of appropriate timing and space scale, geographic information system, and spatial variation analysis model. Thus, not only the best cultivation strategy and yield prediction but also various map layers of space distribution could be well made through crop model and decision analysis model. Eventually, the strategy can be carried out by satellite position and automatic technologies
