38 research outputs found

    SGM3D: Stereo Guided Monocular 3D Object Detection

    Full text link
    Monocular 3D object detection aims to predict the object location, dimension and orientation in 3D space alongside the object category given only a monocular image. It poses a great challenge due to its ill-posed property which is critically lack of depth information in the 2D image plane. While there exist approaches leveraging off-the-shelve depth estimation or relying on LiDAR sensors to mitigate this problem, the dependence on the additional depth model or expensive equipment severely limits their scalability to generic 3D perception. In this paper, we propose a stereo-guided monocular 3D object detection framework, dubbed SGM3D, adapting the robust 3D features learned from stereo inputs to enhance the feature for monocular detection. We innovatively present a multi-granularity domain adaptation (MG-DA) mechanism to exploit the network's ability to generate stereo-mimicking features given only on monocular cues. Coarse BEV feature-level, as well as the fine anchor-level domain adaptation, are both leveraged for guidance in the monocular domain.In addition, we introduce an IoU matching-based alignment (IoU-MA) method for object-level domain adaptation between the stereo and monocular predictions to alleviate the mismatches while adopting the MG-DA. Extensive experiments demonstrate state-of-the-art results on KITTI and Lyft datasets.Comment: 8 pages, 5 figure

    ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks

    Full text link
    In-Network Computing (INC) has found many applications for performance boosts or cost reduction. However, given heterogeneous devices, diverse applications, and multi-path network typologies, it is cumbersome and error-prone for application developers to effectively utilize the available network resources and gain predictable benefits without impeding normal network functions. Previous work is oriented to network operators more than application developers. We develop ClickINC to streamline the INC programming and deployment using a unified and automated workflow. ClickINC provides INC developers a modular programming abstractions, without concerning to the states of the devices and the network topology. We describe the ClickINC framework, model, language, workflow, and corresponding algorithms. Experiments on both an emulator and a prototype system demonstrate its feasibility and benefits

    Effect of phase transition temperature and thermal conductivity on the performance of Latent Heat Storage System

    Get PDF
    2018 Elsevier Ltd The heat transfer properties of phase change materials (PCMs) are of importance for the efficiency assessment on the heat storage and release in solar thermal systems. Previous research results demonstrate that the increase of thermal conductivity of PCMs can enhance the thermal performance in solar thermal systems; however, the corresponding mechanism is not clear. To this end, this work investigates the influence of PCMs properties on storage performance of solar thermal systems. First, experimental testing was conducted to verify the effectiveness of a thermal simulation model in the heat storage and release process. Then, the proposed simulation model was used to investigate the performance of several commonly used PCMs in the process of melting and solidification. The influence of thermal conductivity and phase transition temperature on the thermal storage properties was analyzed. The analysis results demonstrated that the influence of phase transition temperature on the thermal system performance was greater than that of the thermal conductivity in short time, while the thermal conductivity contributed greater influence on the system performance in long time. The phase transition temperature hardly affected the total system efficiency if given enough heat transfer time. The findings in this work may provide a theoretical reference for the selection of heat storage materials

    Mechanical damage characteristics of CR/PPA composite modified asphalt pavement under multi-factor coupling effect in the seasonally frozen region

    No full text
    Asphalt pavements are inevitably affected by coupled effects of dry-wet/freeze-thaw cycles, UV radiation, temperature, and loading during service, resulting in degradation of their road performance and reduced service life. Therefore, this study used crumb rubber (CR) and polyphosphoric acid (PPA) as modifiers to prepare CR/PPA composite modified asphalt mixtures for testing. To investigate the mechanical properties of the composite modified asphalt mixtures under the action of multi-factor coupling. Meanwhile, the performance analysis of matrix asphalt and SBS modified asphalt mixtures were carried out as a comparison. Density and water penetration tests, splitting tests, beam bending tests, and four-point bending fatigue tests reveal the evolution of asphalt mixture road performance. Finally, regression fitting was performed on the test data to establish the mechanical damage model of each type of asphalt mixture. The results show that with the increase of wet-dry/freeze-thaw cycles and the increase of UV radiation time, the void ratio and water permeability coefficient increase and the splitting strength, bending and tensile strain, and fatigue life decrease for all types of asphalt mixtures. When the number of wet-dry/freeze-thaw cycles reached 8, the mechanical properties of the asphalt mixture decreased significantly, while the changes leveled off after the number of cycles reached 15. When the UV radiation time is less than 4 months, the mechanical properties of the asphalt mixture decay more slowly. However, with a further increase in radiation time, the mechanical properties decay rapidly. The water-saturated specimens have a more significant effect on the mechanical damage of each type of asphalt mixture. Compared with the other two mixtures, the composite modified asphalt mixtures have superior mechanical properties and fatigue life. The mixture performance damage model based on the least squares Levenberg-Marquardt method (L-M method) was able to simulate the experimental data well, with a minimum correlation coefficient R2 of 0.9285. In summary, the road performance of all types of asphalt mixtures under the coupling of multiple factors has deteriorated, while the composite modified asphalt mixtures have better anti-damage characteristics, with good prospects for promotion

    Effect of phase transition temperature and thermal conductivity on the performance of latent heat storage system

    Get PDF
    The heat transfer properties of phase change materials (PCMs) are of importance for the efficiency assessment on the heat storage and release in solar thermal systems. Previous research results demonstrate that the increase of thermal conductivity of PCMs can enhance the thermal performance in solar thermal systems; however, the corresponding mechanism is not clear. To this end, this work investigates the influence of PCMs properties on storage performance of solar thermal systems. First, experimental testing was conducted to verify the effectiveness of a thermal simulation model in the heat storage and release process. Then, the proposed simulation model was used to investigate the performance of several commonly used PCMs in the process of melting and solidification. The influence of thermal conductivity and phase transition temperature on the thermal storage properties was analyzed. The analysis results demonstrated that the influence of phase transition temperature on the thermal system performance was greater than that of the thermal conductivity in short time, while the thermal conductivity contributed greater influence on the system performance in long time. The phase transition temperature hardly affected the total system efficiency if given enough heat transfer time. The findings in this work may provide a theoretical reference for the selection of heat storage materials.The National Natural Science Foundation, China (Grant No.: U1137605), the Collaborative Innovation Center of Research and Development of Renewable Energy in the southwest area in China (No.: 05300205020516009), the Project on Co-establishing China-Laos Joint Lab for Renewable Energy (No.: 2015DFA60120), and UOW VC Postdoctoral Fellowship.http://www.journals.elsevier.com/applied-thermal-engineering2019-05-01hj2018Electrical, Electronic and Computer Engineerin

    Genetic Dissection and Simultaneous Improvement of Drought and Low Nitrogen Tolerances by Designed QTL Pyramiding in Rice

    No full text
    Drought and low nitrogen are the most common abiotic stresses limiting rice productivity in the rainfed rice areas of Asia and Africa. Development and adoption of green super rice (GSR) varieties with greatly improved drought tolerance (DT) and low nitrogen tolerance (LNT) are the most efficient way to resolve this problem. In this study, using three sets of trait-specific introgression lines (ILs) in a Xian (indica) variety Huanghuazhan (HHZ) background, we identified nine DT-QTL and seven LNT-QTL by a segregation distortion approach and a genome-wide association study, respectively. Based on performances of DT and LNT and genotypes at the detected QTL, two ILs M79 and M387 with DT and LNT were selected for cross-making to validate the identified QTL and to develop DT and LNT rice lines by pyramiding two DT-QTL (qDT3.9 and qDT6.3) and two LNT-QTL (qGY1 and qSF8). Using four pairs of kompetitive allele specific PCR (KASP) SNP markers, we selected 66 F2 individuals with different combinations of the target DT- and LNT-QTL favorable alleles and they showed expected improvement in DT and/or LNT, which were further validated by the significant improvement in DT and/or LNT of their F3 progeny testing. Based on evaluation of pyramiding lines in F3 lines under drought, low nitrogen (LN) and normal conditions, four promising pyramiding lines having different QTL favorable alleles were selected, which showed significantly improved tolerances to drought and/or LN than HHZ and their IL parents. Our results demonstrated that trait-specific ILs could effectively connect QTL mapping and QTL pyramiding breeding, and designed QTL pyramiding (DQP) using ILs could be more effective in molecular rice breeding for complex quantitative traits

    Simultaneous improvement and genetic dissection of drought and submergence tolerances in rice (Oryza sativa L.) by selective introgression

    Get PDF
    IntroductionDrought and submergence are contrasting abiotic stresses that often occur in the same rice crop season and cause complete crop failure in many rain-fed lowland areas of Asia.MethodsTo develop rice varieties with good tolerances to drought and submergence, 260 introgression lines (ILs) selected for drought tolerance (DT) from nine BC2 populations were screened for submergence tolerance (ST), resulting in 124 ILs with significantly improved ST.ResultsGenetic characterization of the 260 ILs with DNA markers identified 59 DT quantitative trait loci (QTLs) and 68 ST QTLs with an average 55% of the identified QTLs associated with both DT and ST. Approximately 50% of the DT QTLs showed ‘epigenetic’ segregation with very high donor introgression and/or loss of heterozygosity (LOH). Detailed comparison of the ST QTLs identified in ILs selected only for ST with ST QTLs detected in the DT-ST selected ILs of the same populations revealed three groups of QTLs underlying the relationship between DT and ST in rice: a) QTLs with pleiotropic effects on both DT and ST; b) QTLs with opposite effects on DT and ST; and c) QTLs with independent effects on DT and ST. Combined evidence identified most likely candidate genes for eight major QTLs affecting both DT and ST. Moreover, group b QTLs were involved in the Sub1regulated pathway that were negatively associated with most group aQTLs.DiscussionThese results were consistent with the current knowledge that DT and ST in rice are controlled by complex cross-talks between or among different phytohormone-mediated signaling pathways. Again, the results demonstrated that the strategy of selective introgression was powerful and efficient for simultaneous improvement and genetic dissection of multiple complex traits, including DT and ST

    Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator

    No full text
    A theoretical analytical method for optical properties of cavity absorber was proposed in this paper and the optical design software TracePro was used to analyze the optical properties of triangular cavity absorber. It was found that the optimal optical properties could be achieved with appropriate aperture width, depth-to-width ratio, and offset distance from focus of triangular cavity absorber. Based on the results of orthogonal experiment, the optimized triangular cavity absorber was designed. Results showed that the standard deviation of irradiance and optical efficiency of optimized designed cavity absorber were 30528 W/m2 and 89.23%, respectively. Therefore, this study could offer some valuable references for designing the parabolic trough solar concentrator in the future

    Sound Velocity Anisotropy and Single‐Crystal Elastic Moduli of MgO to 43 GPa

    No full text
    Seismic anisotropy in the Earth's lower mantle likely results from a combination of elastic anisotropy and lattice preferred orientations of its main constituent minerals. As the second most abundant component of the lower mantle, ferropericlase has been widely studied, and the experimental results demonstrated, in general, a growing with pressure elastic anisotropy up to 1 Mbar. However, the unique measurements on the endmember (MgO) at comparable pressure conditions contradict the above observations and theoretical results. Here, time‐domain Brillouin scattering was applied to measure longitudinal sound velocities in single crystals of MgO compressed in diamond anvil cell. Velocities along two specific crystallographic directions, [100] and [111], were independently collected to 43 GPa. Applying the known bulk modulus, a complete set of single‐crystal elastic moduli, elastic anisotropy and aggregate shear modulus were derived. Our results revealed a steadily increasing with pressure elastic anisotropy at P>20 GPa, consistent with the previous theoretical predictions and measurements on ferropericlase with moderate amounts of iron
    corecore