836 research outputs found

    Generalized Kinetic Theory of Electrons and Phonons

    Full text link
    A Generalized Kinetic Theory was proposed in order to have the possibility to treat particles which obey a very general statistics. By adopting the same approach, we generalize here the Kinetic Theory of electrons and phonons. Equilibrium solutions and their stability are investigated.Comment: Proceedings of the International School and Workshop on Nonextensive Thermodynamics and Physical Applications, NEXT 2001, 23-30 May 2001, Cagliari (Italy) (To appear in Physica A

    On Kinetic Theory Viscosity in a Rotating Gas

    Full text link
    Clarke and Pringle (2004) derived a proper viscosity formula in a rotating gas by applying mean free path theory. We study their argument in detail and show that their result can be derived with a much simpler calculational procedure and physically clearer picture.Comment: 7 pages, 1 figure; Prog. Theor. Phys. Vol. 112, No.

    Decoherence Effects in Reactive Scattering

    Full text link
    Decoherence effects on quantum and classical dynamics in reactive scattering are examined using a Caldeira-Leggett type model. Through a study of dynamics of the collinear H+H2 reaction and the transmission over simple one-dimensional barrier potentials, we show that decoherence leads to improved agreement between quantum and classical reaction and transmission probabilities, primarily by increasing the energy dispersion in a well defined way. Increased potential nonlinearity is seen to require larger decoherence in order to attain comparable quantum-classical agreement.Comment: 25 pages, 6 figures, to be published in J. Chem. Phy

    Minimum of η/s\eta/s and the phase transition of the Linear Sigma Model in the large-N limit

    Get PDF
    We reexamine the possibility of employing the viscosity over entropy density ratio as a diagnostic tool to identify a phase transition in hadron physics to the strongly coupled quark-gluon plasma and other circumstances where direct measurement of the order parameter or the free energy may be difficult. It has been conjectured that the minimum of eta/s does indeed occur at the phase transition. We now make a careful assessment in a controled theoretical framework, the Linear Sigma Model at large-N, and indeed find that the minimum of eta/s occurs near the second order phase transition of the model due to the rapid variation of the order parameter (here the sigma vacuum expectation value) at a temperature slightly smaller than the critical one.Comment: 22 pages, 19 figures, v2, some references and several figures added, typos corrected and certain arguments clarified, revised for PR

    Is there a "most perfect fluid" consistent with quantum field theory?

    Get PDF
    It was recently conjectured that the ratio of the shear viscosity to entropy density, η/s \eta/ s, for any fluid always exceeds /(4πkB)\hbar/(4 \pi k_B). This conjecture was motivated by quantum field theoretic results obtained via the AdS/CFT correspondence and from empirical data with real fluids. A theoretical counterexample to this bound can be constructed from a nonrelativistic gas by increasing the number of species in the fluid while keeping the dynamics essentially independent of the species type. The question of whether the underlying structure of relativistic quantum field theory generically inhibits the realization of such a system and thereby preserves the possibility of a universal bound is considered here. Using rather conservative assumptions, it is shown here that a metastable gas of heavy mesons in a particular controlled regime of QCD provides a realization of the counterexample and is consistent with a well-defined underlying relativistic quantum field theory. Thus, quantum field theory appears to impose no lower bound on η/s\eta/s, at least for metastable fluids.Comment: 4 pages; typos corrected and references added in new versio

    Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box

    Full text link
    We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of the experimental data suggests that the localization is due to energetic atoms leaking over the barrier. Our data also indicates a correlation between collisions and the destruction of the Bose-Einstein condensate fraction.Comment: 7 pages, 8 figure

    The Nonlinear Permittivity Including Non-Abelian Self-interaction of Plasmons in Quark-Gluon Plasma

    Get PDF
    By decomposing the distribution functions and color field to regular and fluctuation parts, the solution of the semi-classical kinetic equations of quark-gluon plasma is analyzed. Through expanding the kinetic equations of the fluctuation parts to third order, the nonlinear permittivity including the self-interaction of gauge field is obtained and a rough numerical estimate is given out for the important \vk =0 modes of the pure gluon plasma.Comment: 7 pages, shortened version accepted by Chin.Phys.Let

    Weakly nonlocal irreversible thermodynamics - the Guyer-Krumhansl and the Cahn-Hilliard equations

    Full text link
    Examples of irreversible thermodynamic theory of nonlocal phenomena are given, based on generalized entropy current. Thermodynamic currents and forces are identified to derive the Guyer-Krumhansl and Cahn-Hilliard equations. In the latter case Gurtin's rate dependent additional term is received through the thermodynamic approach.Comment: revise

    J-matrix method of scattering in one dimension: The nonrelativistic theory

    Full text link
    We formulate a theory of nonrelativistic scattering in one dimension based on the J-matrix method. The scattering potential is assumed to have a finite range such that it is well represented by its matrix elements in a finite subset of a basis that supports a tridiagonal matrix representation for the reference wave operator. Contrary to our expectation, the 1D formulation reveals a rich and highly non-trivial structure compared to the 3D formulation. Examples are given to demonstrate the utility and accuracy of the method. It is hoped that this formulation constitutes a viable alternative to the classical treatment of 1D scattering problem and that it will help unveil new and interesting applications.Comment: 24 pages, 9 figures (3 in color
    corecore