52 research outputs found

    The Shape and Profile of the Milky Way Halo as Seen by the Canada-France-Hawaii Telescope Legacy Survey

    Get PDF
    We use Canada-France-Hawaii Telescope Legacy Survey data for 170 deg^2, recalibrated and transformed to the Sloan Digital Sky Survey ugri photometric system, to study the distribution of near-turnoff main-sequence stars in the Galactic halo along four lines of sight to heliocentric distances of ~35 kpc. We find that the halo stellar number density profile becomes steeper at Galactocentric distances greater than R_(gal) ~ 28 kpc, with the power-law index changing from n_(inner) = –2.62 ± 0.04 to n_(outer) = –3.8 ± 0.1. In particular, we test a series of single power-law models and find them to be strongly disfavored by the data. The parameters for the best-fit Einasto profile are n = 2.2 ± 0.2 and R_e = 22.2 ± 0.4 kpc. We measure the oblateness of the halo to be q ≡ c/a = 0.70 ± 0.01 and detect no evidence of it changing across the range of probed distances. The Sagittarius stream is detected in the l = 173° and b = –62° direction as an overdensity of [Fe/H] ~ -1.5 dex stars at R_(gal) ~ 32 kpc, providing a new constraint for the Sagittarius stream and dark matter halo models. We also detect the Monoceros stream as an overdensity of [Fe/H] > -1.5 dex stars in the l = 232° and b = 26° direction at R_(gal) ≲ 25 kpc. In the two sight lines where we do not detect significant substructure, the median metallicity is found to be independent of distance within systematic uncertainties ([Fe/H] ~ -1.5 ± 0.1 dex)

    Revealing the Nature of Extreme Coronal-line Emitter SDSS J095209.56+214313.3

    Get PDF
    Extreme coronal-line emitter (ECLE) SDSSJ095209.56+214313.3, known by its strong, fading, high ionization lines, has been a long standing candidate for a tidal disruption event, however a supernova origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: 1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and 2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope. The well-sampled, 10\sim10-year long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5\pm5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the \textsl{GALEX} data (early 2006) with the recently acquired Swift UVOT (June 2015) and Mercator observations (April 2015) demonstrate a decrease in the UV flux over a 10\sim 10 year period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors a SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that TDEs are in fact capable of powering the enigmatic class of ECLEs.Comment: Submitted to Ap

    Exploring the Variable Sky with LINEAR. I. Photometric Recalibration with the Sloan Digital Sky Survey

    Get PDF
    We describe photometric recalibration of data obtained by the asteroid survey LINEAR. Although LINEAR was designed for astrometric discovery of moving objects, the data set described here contains over 5 billion photometric measurements for about 25 million objects, mostly stars. We use Sloan Digital Sky Survey (SDSS) data from the overlapping ~10,000 deg^2 of sky to recalibrate LINEAR photometry and achieve errors of 0.03 mag for sources not limited by photon statistics with errors of 0.2 mag at r ~ 18. With its 200 observations per object on average, LINEAR data provide time domain information for the brightest four magnitudes of the SDSS survey. At the same time, LINEAR extends the deepest similar wide-area variability survey, the Northern Sky Variability Survey, by 3 mag. We briefly discuss the properties of about 7000 visually confirmed periodic variables, dominated by roughly equal fractions of RR Lyrae stars and eclipsing binary stars, and analyze their distribution in optical and infrared color-color diagrams. The LINEAR data set is publicly available from the SkyDOT Web site

    Solving the puzzle of discrepant quasar variability on monthly time-scales implied by SDSS and CRTS data sets

    Get PDF
    We present an improved photometric error analysis for the 7 100 CRTS (Catalina Real-Time Transient Survey) optical light curves for quasars from the SDSS (Sloan Digital Sky Survey) Stripe 82 catalogue. The SDSS imaging survey has provided a time-resolved photometric data set, which greatly improved our understanding of the quasar optical continuum variability: Data for monthly and longer time-scales are consistent with a damped random walk (DRW). Recently, newer data obtained by CRTS provided puzzling evidence for enhanced variability, compared to SDSS results, on monthly time-scales. Quantitatively, SDSS results predict about 0.06 mag root-mean-square (rms) variability for monthly time-scales, while CRTS data show about a factor of 2 larger rms, for spectroscopically confirmed SDSS quasars. Our analysis has successfully resolved this discrepancy as due to slightly underestimated photometric uncertainties from the CRTS image processing pipelines. As a result, the correction for observational noise is too small and the implied quasar variability is too large. The CRTS photometric error correction factors, derived from detailed analysis of non-variable SDSS standard stars that were re-observed by CRTS, are about 20–30 per cent, and result in reconciling quasar variability behaviour implied by the CRTS data with earlier SDSS results. An additional analysis based on independent light curve data for the same objects obtained by the Palomar Transient Factory provides further support for this conclusion. In summary, the quasar variability constraints on weekly and monthly time-scales from SDSS, CRTS and PTF surveys are mutually compatible, as well as consistent with DRW model

    Epidemiological Study of Visual Functions – Refractive Errors, Macular Degeneration and Glaucoma in Children in the Karst Area of Opatija

    Get PDF
    Authors of earlier studies examined the epidemiological characteristics of certain eye diseases: age-related macular degeneration (AMD), refractive errors and glaucoma in the area of Primorsko-goranska County (the island of Rab, Novi Vinodolski and Delnice). It was found that the occurrence of AMD is most common on the island of Rab, followed by Novi Vinodolski and it is least common in Gorski Kotar. This fact is associated with the intensity of solar radiation in the UV-A and UV-B fi elds. The highest percentage of the occurrence of glaucoma was also identifi ed on the island of Rab. In comparison to this study, it was found that in the karst area of Opatija (Mune, Brgud, Žejane, Brešca, Zvoneće, Pasjak, Šapjane and Zaluki) there is a very high incidence of glaucoma (27% suspected and 7% diagnosed glaucoma) within the indigenous population. Glaucoma does not appear among children whose parents migrated to the karst area of Opatija. Refractive errors are far less common among children of indigenous population than among the children whose parents migrated to this area. The occurrence of AMD was not found in any child that was born and lives in this area, regardless of whether their parents are indigenous or not. This statement is very important because it confi rms author’s earlier statement which claims that at low exposure to solar UV-A and UV-B there is no occurrence of AMD

    Halo Velocity Groups in the Pisces Overdensity

    Full text link
    We report spectroscopic observations with the Gemini South Telescope of 5 faint V~20 RR Lyrae stars associated with the Pisces overdensity. At a heliocentric and galactocentric distance of ~80 kpc, this is the most distant substructure in the Galactic halo known to date. We combined our observations with literature data and confirmed that the substructure is composed of two different kinematic groups. The main group contains 8 stars and has = 50 km/s, while the second group contains four stars at a velocity of = -52 km/s, where V_{gsr} is the radial velocity in the galactocentric standard of rest. The metallicity distribution of RR Lyrae stars in the Pisces overdensity is centered on [Fe/H]=-1.5 dex and has a width of 0.3 dex. The new data allowed us to establish that both groups are spatially extended making it very unlikely that they are bound systems, and are more likely to be debris of a tidally disrupted galaxy or galaxies. Due to small sky coverage, it is still unclear whether these groups have the same or different progenitors.Comment: 21 pages, 5 figures, 3 tables, accepted to Astrophysical Journa

    HEALTH STATUS, LIFESTYLE, USE OF HEALTH SERVICES, SOCIAL CAPITAL AND LIFE SATISFACTION AS PREDICTORS OF MENTAL HEALTH - COMPARATIVE ANALYSIS OF WOMEN THAT RECEIVE AND DO NOT RECEIVE PUBLIC ASSISTANCE IN CROATIA

    Get PDF
    Background: The connection between socio-economic status and health is documented, yet not fully understood. The goal of this research was to analyze the relationship between socio-economic status, lifestyle and health status, availability of health-care, social capital, and satisfaction with life. Subjects and methods: Subjects were 1117 women aged 25-65 years divided in two groups. Group 1 consisted of women who receive public assistance (N1=591), while Group 2 consisted of women who do not (N2=526). The sample was stratified by random choice into multiple stages based on six regions of Croatia, residential area size, and the age of respondents. Visiting nurses surveyed the deprived population, while in Group 2 self-interviewing was conducted. A questionnaire entitled “Inequalities in health” was used. The respondents participated in this research voluntarily and anonymously. Results: Socially deprived women consume spirits and wine more often (p<0.001). There is no difference between groups regarding tobacco consummation. Working women perform significantly less strenuous physical tasks (p<0.001). Deprived women are significantly less engaged in physical activities (p<0.001). Health conditions in deprived women more commonly limit their physical activity (p<0.001). There is a significant difference in utilization of health-care among groups (p<0.001). Younger women who are married, with a higher number of household members, a larger income, and with higher education are generally more satisfied with life (p<0.001). Although deprived women are significantly less satisfied with their lives, feel less free, are less physically active, and less likely to consume spirits or beer, they are significantly happier than working women (p<0.001). Conclusions: Personal health status and lifestyle, access to health-care services, and life satisfaction have a high importance as predictors and protective factors of mental health in women - recipients of state-provided financial welfare

    Solving the puzzle of discrepant quasar variability on monthly time-scales implied by SDSS and CRTS data sets

    Get PDF
    We present an improved photometric error analysis for the 7 100 CRTS (Catalina Real-Time Transient Survey) optical light curves for quasars from the SDSS (Sloan Digital Sky Survey) Stripe 82 catalogue. The SDSS imaging survey has provided a time-resolved photometric data set, which greatly improved our understanding of the quasar optical continuum variability: Data for monthly and longer time-scales are consistent with a damped random walk (DRW). Recently, newer data obtained by CRTS provided puzzling evidence for enhanced variability, compared to SDSS results, on monthly time-scales. Quantitatively, SDSS results predict about 0.06 mag root-mean-square (rms) variability for monthly time-scales, while CRTS data show about a factor of 2 larger rms, for spectroscopically confirmed SDSS quasars. Our analysis has successfully resolved this discrepancy as due to slightly underestimated photometric uncertainties from the CRTS image processing pipelines. As a result, the correction for observational noise is too small and the implied quasar variability is too large. The CRTS photometric error correction factors, derived from detailed analysis of non-variable SDSS standard stars that were re-observed by CRTS, are about 20–30 per cent, and result in reconciling quasar variability behaviour implied by the CRTS data with earlier SDSS results. An additional analysis based on independent light curve data for the same objects obtained by the Palomar Transient Factory provides further support for this conclusion. In summary, the quasar variability constraints on weekly and monthly time-scales from SDSS, CRTS and PTF surveys are mutually compatible, as well as consistent with DRW model

    Simulated LSST Survey of RR Lyrae Stars throughout the Local Group

    Get PDF
    We report on a study to determine the efficiency of the Large Synoptic Survey Telescope (LSST) to recover the periods, brightnesses, and shapes of RR Lyrae stars' light curves in the volume extending to heliocentric distances of 1.5 Mpc. We place the smoothed light curves of 30 type ab and 10 type c RR Lyrae stars in 1007 fields across the sky, each of which represents a different realization of the LSST sampling cadences, and that sample five particular observing modes. A light curve simulation tool was used to sample the idealized RR Lyrae stars' light curves, returning each as it would have been observed by LSST, including realistic photometric scatter, limiting magnitudes, and telescope downtime. We report here the period, brightness, and light curve shape recovery as a function of apparent magnitude and for survey lengths varying from 1 to 10 years. We find that 10 years of LSST data are sufficient to recover the pulsation periods with a fractional precision of ~10^(–5) for ≥90% of ab stars within ≈360 kpc of the Sun in Universal Cadence fields and out to ≈760 kpc for Deep Drilling fields. The 50% completeness level extends to ≈600 kpc and ≈1.0 Mpc for the same fields, respectively. For virtually all stars that had their periods recovered, their light curve shape parameter φ_31 was recovered with sufficient precision to also recover photometric metallicities to within 0.14 dex (the systematic error in the photometric relations). With RR Lyrae stars' periods and metallicities well measured to these distances, LSST will be able to search for halo streams and dwarf satellite galaxies over half of the Local Group, informing galaxy formation models and providing essential data for mapping the Galactic potential. This study also informs the LSST science operations plan for optimizing observing strategies to achieve particular science goals. We additionally present a new [Fe/H]-φ_31 photometric relation in the r band and a new and generally useful metric for defining period recovery for time domain surveys
    corecore