40 research outputs found

    Antioxidant activity of xanthone derivatives

    Get PDF
    Certain xanthone derivatives, such as these present in mangosteen fruits, show strong antioxidant activity. On the other hand, evidences accumulated that oxidative stress is involved in epileptogenesis. Therefore, the aim of the present study was to estimate total antioxidant capacity (expressed as a ferric reducing antioxidant power - FRAP) and evaluate ability to scavenge free radicals (DPPH methods) by xanthone derivatives showing antiepileptic activity. Selected 2-(aminomethyl)-9H-xanthen-9-one derivatives shared structural features, such as chlorine substituent in xanthone ring and different chiral (or not) alkanol groups at the nitrogen atom. The results of antioxidant activities among racemates revealed the highest activity for compound (R/S)-3 (31.7% in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and (0.184 ± 0.003 mM Fe2+/L) in FRAP assay. Among tested pair of enantiomers we observed that (R)-1 and (R)-2 showed higher reduction capacity ((R)ñ1: 0.096 ± 0.007 mM Fe2+/L; (R)-2: 0.048 ± 0.005 mM Fe2+/L, respectively) and strongerDPPH scavenging activity ((R)-1: 31 ± 3.0%; (R)-2: 29 ± 2.5%, respectively) comparing to their (S)-enantiomers and racemates

    Skin metabolism established with the use of MetaSite for selected retinoids employed in topical and systemic treatment of various skin disorders and found in cosmeceuticals

    Get PDF
    Purpose. Besides being widely used in cosmetics, retinoids are potent therapeutic agents used topically and systemically as anti-acne agents. The aim of this study was to predict with the use of MetaSite the skin metabolism of selected retinoids employed in treatment of skin disorders and found in cosmeceuticals. The following compounds were studied: retinol, retinaldehyde, retinoic acid, retinyl acetate, retinyl palmitate, acitretin, etretinate, adapalene and bexarotene. Methods. MetaSite, Molecular Discovery Ltd. is a computational model that enables prediction of cytochrome P450-dependant metabolism. This software indicates atoms in the molecule structure that are mostly vulnerable to metabolic changes and predicts the metabolite structures. Results. MetaSite indicated that retinol and retinal metabolites were obtained through hydroxylation of the methyl group located in the position 3 of the aliphatic chain, whereas retinoic acid biotransformation would occur principally in the carbon atom situated in the position 4 in the cyclohexene ring. In acitretin molecule, carbon atom of the methoxy group attached to the benzene ring displayed the highest probability of biotransformation. In etretinate, metabolic reactions would occur principally on the carbon atom of the final ethyl group of the molecule. Conclusions. MetaSite metabolism predictions for retinoic acid, acitretin, etretinate, adapalene and bexarotene were in agreement with experimental findings. In case of compounds being converted by catalysts other than cytochrome P450 enzymes, the primary metabolites predicted by MetaSite differ from those reported previously. In conclusion, MetaSite is a useful tool that can aid identification of the major metabolites of compounds being administered topically

    Metabolic stability and its role in the discovery of new chemical entities

    Get PDF
    Determination of metabolic profiles of new chemical entities is a key step in the process of drug discovery, since it influences pharmacokinetic characteristics of therapeutic compounds. One of the main challenges of medicinal chemistry is not only to design compounds demonstrating beneficial activity, but also molecules exhibiting favourable pharmacokinetic parameters. Chemical compounds can be divided into those which are metabolized relatively fast and those which undergo slow biotransformation. Rapid biotransformation reduces exposure to the maternal compound and may lead to the generation of active, non-active or toxic metabolites. In contrast, high metabolic stability may promote interactions between drugs and lead to parent compound toxicity. In the present paper, issues of compound metabolic stability will be discussed, with special emphasis on its significance, in vitro metabolic stability testing, dilemmas regarding in vitro-in vivo extrapolation of the results and some aspects relating to different preclinical species used in in vitro metabolic stability assessment of compounds

    S(+)-(2E)-N-(2-Hydroxypropyl)-3-Phenylprop-2-Enamide (KM-568) : a novel cinnamamide derivative with anticonvulsant activity in animal nodels of seizures and epilepsy

    Get PDF
    Epilepsy is one of the most frequent neurological disorders affecting about 1% of the world’s human population. Despite availability of multiple treatment options including antiseizure drugs, it is estimated that about 30% of seizures still remain resistant to pharmacotherapy. Searching for new antiseizure and antiepileptic agents constitutes an important issue within modern medicinal chemistry. Cinnamamide derivatives were identified in preclinical as well as clinical studies as important drug candidates for the treatment of epilepsy. The cinnamamide derivative presented here: S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide (S(+)-N-(2-hydroxypropyl)cinnamamide, compound KM-568) showed anticonvulsant activity in several models of epilepsy and seizures in mice and rats. It was active in a genetic animal model of epilepsy (Frings audiogenic seizure-susceptible mouse model, ED50 = 13.21 mg/kg, i.p.), acute seizures induced electrically (maximal electroshock test ED50 = 44.46 mg/kg mice i.p., ED50 = 86.6 mg/kg mice p.o., ED50 = 27.58 mg/kg rats i.p., ED50 = 30.81 mg/kg rats p.o., 6-Hz psychomotor seizure model 32 mA ED50 = 71.55 mg/kg mice i.p., 44 mA ED50 = 114.4 mg/kg mice i.p.), chronic seizures induced electrically (corneal kindled mouse model ED50 = 79.17 mg/kg i.p., hippocampal kindled rat model ED50 = 24.21 mg/kg i.p., lamotrigine-resistant amygdala kindled seizure model in rats ED50 = 58.59 mg/kg i.p.), acute seizures induced chemically (subcutaneous metrazol seizure threshold test ED50 = 104.29 mg/kg mice i.p., ED50 = 107.27 mg/kg mice p.o., ED50 = 41.72 mg/kg rats i.p., seizures induced by picrotoxin in mice ED50 = 94.11 mg/kg i.p.) and the pilocarpine-induced status epilepticus model in rats (ED50 = 279.45 mg/kg i.p., ED97 = 498.2 mg/kg i.p.). The chemical structure of the compound including configuration of the chiral center was confirmed by NMR spectroscopy, LC/MS spectroscopy, elemental analysis, and crystallography. Compound KM-568 was identified as a moderately stable derivative in an in vitro mouse liver microsome system. According to the Ames microplate format mutagenicity assay performed, KM-568 was not a base substitution or frameshift mutagen. Cytotoxicity evaluation in two cell lines (HepG2 and H9c2) proved the safety of the compound in concentrations up to 100 µM. Based on the results of anticonvulsant activity and safety profile, S(+)-(2E)-N-(2-hydroxypropyl)-3-phenylprop-2-enamide could be proposed as a new lead compound for further preclinical studies on novel treatment options for epilepsy

    Alcohol Dehydrogenases as Tools for the Preparation of Enantiopure Metabolites of Drugs with Methyl Alkyl Ketone Moiety

    No full text
    Three dehydrogenases – (R)-alcohol dehydrogenase from L. kefir, (S)-aromatic alcohol dehydrogenase from T. sp. and (S)-alcohol dehydrogenase from T. brockii – were tested for the preparation of enantiopure hydroxyl metabolites of pentoxifylline (PTX), propentofylline (PPT) and denbufylline (DBF). These metabolites have an important pharmacological significance. The experimental conditions were optimized for biocatalytic reactions. LKADH produced the chiral secondary alcohols: (R)-OHPTX, (R)-OHPPT and (R)-OHDBF, in an anti- Prelog’s rule configuration. In contrast, TBADH and SAADH also generated chiral secondary alcohols, but according to Prelog’s rule, giving (S)-OHPTX, (S)-OHPPT and (S)-OHDBF respectively. All the ADHs tested were characterized by a high enantioselectivity (ees of 99–100%), but the yield of bioconversion was only satisfactory for the reactions performed using LKADH, being in the 96–98% range for PPT and PTX respectively
    corecore