13 research outputs found

    Improvement of water vapor barrier properties of chitosan-collagen laminated casings using beeswax

    Get PDF
    Collagen casings are commercially used in sausage production. In this paper, collagen film that is used for sausage casings was laminated with chitosan film to produce barrier casing film. Chitosan coating was prepared by dissolving chitosan powder in 1% acetic acid. After dissolving chitosan, caraway essential oil, wetting agent Tween 20 and different amounts of beeswax, from 0 to 25 g were added to the solution. The solution was coated on collagen film surface in three layers, using a sponge brush to make laminated films. Films were air dried at temperature t =23 °C ± 2 °C. Uncoated collagen film was used as reference. Film thickness, water vapor barrier properties and FTIR spectra were determined. With growing amount of beeswax added to the chitosan layer, film thickness grew from 112 µm for laminated film with 5 g of beeswax to 225 µm for film with 25 g of beeswax, compared to 83 µm for collagen film. Water vapor barrier properties improved with growing amount of beeswax in chitosan layer, ranging from 130.71 g/m2 24h for laminated film with added 5 g of beeswax to 66.96 g/m2 24h for the film with 25 g of beeswax, compared to 290.64 g/m2 24h for collagen film. Addition of beeswax showed great potential in lowering water vapor permeability of laminated collagen-chitosan film. FTIR spectra could be used to determine quantitative law dependency between added amount of beeswax and spectra absorption values,as well as to prove compactness of chitosan-beeswax layer

    Improvement of Water Vapor Barrier Properties of Chitosan-Collagen Laminated Casings using Beeswax

    Get PDF
    Collagen casings are commercially used in sausage production. In this paper, collagen film that is used for sausage casings was laminated with chitosan film to produce barrier casing film. Chitosan coating was prepared by dissolving chitosan powder in 1% acetic acid. After dissolving chitosan, caraway essential oil, wetting agent Tween 20 and different amounts of beeswax, from 0 to 25 g were added to the solution. The solution was coated on collagen film surface in three layers, using a sponge brush to make laminated films. Films were air dried at temperature t = 23 °C ± 2 °C. Uncoated collagen film was used as reference. Film thickness, water vapor barrier properties and FTIR spectra were determined. With growing amount of beeswax added to the chitosan layer, film thickness grew from 112 µm for laminated film with 5 g of beeswax to 225 µm for film with 25 g of beeswax, compared to 83 µm for collagen film. Water vapor barrier properties improved with growing amount of beeswax in chitosan layer, ranging from 130.71 g/m224h for laminated film with added 5 g of beeswax to 66.96 g/m224h for the film with 25 g of beeswax, compared to 290.64 g/m224h for collagen film. Addition of beeswax showed great potential in lowering water vapor permeability of laminated collagen-chitosan film. FTIR spectra could be used to determine quantitative law dependency between added amount of beeswax and spectra absorption values,as well as to prove compactness of chitosan-beeswax layer

    Effects of temperature and immersion time on rehydration of osmotically dehydrated pork meat

    Get PDF
    The aim of this work was to study the changes in osmotically dehydrated (OD) pork meat during rehydration. Meat samples (lxlxlcm cubes) were osmotically treated in two solutions: (1) solution with 350g of NaCI and 1200g of sucrose diluted in I I of distilled water and (2) sugar beet molasses (80 °Brix) solution at 23±2°C for 1, 2, 3 and 4 hours. In both cases, the solution to sample mass ratio was 10:1 to avoid significant dilution of the medium by water removal. After being osmotically dehydrated, meat samples were rehydrated by immersing meat cubes in water bath at constant temperature (20, 40 and 60 °C). The samples were removed after different immersion periods (15, 30, 45 and 60 min) and examined for mass and volume gain and rehydration percentage was calculated. After relatively short time (15 min), significant weight and volume gains were observed for both treatments. Process temperature was the most significant variable affecting final dry matter content and rehydration kinetics. At the end of rehydration process, conducted at 20 °C and 40 °C, a significant recovery in mass was observed, although the values were lower than for fresh meat. Ruptured and shrunken meat tissue produced as the result of OD had reduced its ability to absorb water. Rehydration percentage at 20 °C for molasses solution was 24.11%, and for sucrose-salt solution was 26.19%. However, rehydration at 40° C brings higher mass gain in case of molasses as a solution (11.33%) compared with sucrose-salt solution (7.88%). Results obtained at 60 °C were negative which means that rehydration didn't take place. The best conditions for meat rehydration were obtained using a temperature of 20 °C and time of 60 min. Volume of samples increased almost linearly with weight increment

    Antioxidative activity of chitosan and chitosan based biopolymer film

    Get PDF
    Growing consumer demand for the food without chemical preservatives focused significant extent of research in the direction of finding natural compounds that can be used in food preservation. In this context, natural substances with strong antimicrobial and antioxidant properties, like essential oils, as well as natural biopolymers, particularly draw attention. Natural biopolymers can serve as carriers of the active components, such as essential oils in order of their sustained release to the food during storage, and may themselves exhibit activity in protecting foods from oxidation and/or microbial spoilage. Chitosan has been extensively studied as semi-natural polymer with expressed bioactive properties. While antimicrobial activity of chitosan solution in different acids has been confirmed towards different bacteria, yeasts and moulds, reports concerning intensity, underlying machanism and different factors afecting antioxidant activity of chitosan vary through the available literature. This paper presents a review in the field of antioxidative activity of chitosan with different properties, as well as chitosan based biopolymer films in order to clarify this aspect of chitosan bioactivity and confront different reports found in the literature

    Structural characterisation of starch based edible films with essential oil addition

    Get PDF
    Present study investigated structure of starch based edible films with essential oil addition. Films were obtained from water solutions containing gelatinized modified starch, polyol, guar-xantan gum modified mixture and essential oil by casting it on a Petri dish and evaporating at room temperature for 72h. Both, glycerol and guar-xantan modified mixture, had role to improve film flexibility and enable better film folding and handling. Two sample groups were obtained: starch based edible films with black cumin oil addition and starch based edible films with black pepper oil addition. Both essential oils were added in three different concentrations. Starch based edible film without essential oil addition was used as blank shot. Structural properties were determined by analyzing spectra obtained by FT-IR Spectrometer in the spectral range of 4000–400 cm−1 with a 4.0 cm−1 resolution. Software Omnic 8.1. and TQ Analyst were used to operate the FTIR spectrometer, collect and present all the data. Results pointed to quantitative law dependency between added amount of essential oils and spectra absorption values for both sample groups and FTIR spectra were used to calculate coefficient of correlation

    Structural characterisation of starch based edible films with essential oil addition

    Get PDF
    Present study investigated structure of starch based edible films with essential oil addition. Films were obtained from water solutions containing gelatinized modified starch, polyol, guar-xantan gum modified mixture and essential oil by casting it on a Petri dish and evaporating at room temperature for 72h. Both, glycerol and guar-xantan modified mixture, had role to improve film flexibility and enable better film folding and handling. Two sample groups were obtained: starch based edible films with black cumin oil addition and starch based edible films with black pepper oil addition. Both essential oils were added in three different concentrations. Starch based edible film without essential oil addition was used as blank shot. Structural properties were determined by analyzing spectra obtained by FT-IR Spectrometer in the spectral range of 4000–400 cm−1 with a 4.0 cm−1 resolution. Software Omnic 8.1. and TQ Analyst were used to operate the FTIR spectrometer, collect and present all the data. Results pointed to quantitative law dependency between added amount of essential oils and spectra absorption values for both sample groups and FTIR spectra were used to calculate coefficient of correlation

    Comparison of life cycle assessment for different volume polypropylene jars

    No full text
    When deciding what packaging is the most appropriate for a product there are many factors to be considered. One of them is the impact of the packaging on environment. In this work, life cycle inventory and life cycle assessment of two different volume packagings were compared. The data were collected on the types and amounts of materials and energy consumption in the process of packaging and distribution of hand cream packed in polypropylene jars of 200 and 350 mL. Life cycle inventory (LCI) and life cycle impact assessment (LCA) were calculated. It was found that the total mass flow was higher for the jars of 350 mL. After analyzing individual flows, it was found that in both cycles (polypropylene jars of 200 and 350 mL),the consumption of fresh water was a dominant flow. This fresh water flow is mostly (95%) consumed in the injection molding process of manufacturing jars from polypropylene granules. The LCA analysis showed no significant difference in global warming potential between different volume jars. The process that mostly affected global warming was the production of polypropylene jars from polypropylene granules by injection molding for both jar volumes. Judging by the global warming potential, there is no difference of the environmental impact between investigated jars, but considering the mass flow and water consumption, more environmental friendly were the 200 mL jars

    EDIBLE FILMS AND COATINGS -SOURCES, PROPERTIES AND APPLICATION

    No full text
    ABSTRACT: In order to extend product shelf life while preserving the quality scientific attention focused to biopolymers research that are base for edible films and coatings production. Another major advantage of this kind of food packaging is their eco-friendly status because biopolymers do not cause environmental problems as packaging materials derived from non-renewable energy sources do. Objective of this work was to review recently studied edible films and coatings -their sources, properties and possible application. As sources for edible biopolymers were highlighted polysaccharides, proteins and lipids. The most characteristic subgroups from each large group of compounds were selected and described regarding possible physical and mechanical protection; migration, permeation, and barrier functions. The most important biopolymers characteristic is possibility to act as active substance carriers and to provide controlled release. In order to achieve active packaging functions emulsifiers, antioxidants and antimicrobial agents can also be incorporated into film-forming solutions in order to protect food products from oxidation and microbial spoilage, resulting in quality improvement and enhanced safety. The specific application where edible films and coatings have potential to replace some traditional polymer packaging are explained. It can be concluded that edible films and coatings must be chosen for food packaging purpose according to specific applications, the types of food products, and the major mechanisms of quality deterioration

    Influence of storage period on properties of biopolymer packaging materials and pouches

    No full text
    Bilayer biodegradable films based on pumpkin oil cake (PuOC) and zein, as well as pouches made from these materials, were prepared, and the changes of their mechanical, physicochemical and barrier properties were analyzed during four weeks of storage. Heat seal quality of formed pouches and composition of the gas atmosphere in the pouches were also monitored. The results showed that the bilayer film had a thickness of 300 ± 10 (μm), and no its changes were observed during the storage time. The tensile strength of the tested film increased slightly in the third week, but the elongation at break showed a decreasing trend during the whole storage period. The decreases in the moisture content, total soluble matter and swelling of the obtained film, were also observed. After one month of storage, the O2 transmission rate of tested films, increased from 27 to 64 (ml/m2 24h 1 bar), and the CO2 gas transmission rate from 147 to 188 (ml/m2 24h 1 bar). The heat seal strength of the PuOC/Zein pouches decreased during the whole storage period. The percentage of O2 in PuOC/Zein pouches increased up to 7 times during the storage period; however, the percentage of CO2 decreased up to 18 times already after one week, and then remained stable in the rest of the storage period. These results are, to a smaller extent, due to the gas transmission rate through the material, especially for CO2 , and to a greater extent, due to the low heat seal strength, which decreased through the storage period, and probably influenced the content of the gases in the pouches.[Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 46010

    Effect of chitosan-caraway coating on color stability and lipid oxidation of traditional dry fermented sausage

    No full text
    Chitosan, the second most abundant polysaccharide in nature, after cellulose, has been tested for numerous applications, among which for edible film and coating. Chitosan-based coating showed positive results for shelf life prolongation of meet products. In this paper, dry fermented sausage (Petrovská klobása) was coated with chitosan-caraway film. The effect of coating on the moisture content, color and lipid oxidation was investigated during a fivemonth period of storage. The moisture content decreased rapidly during the storage and the coating did not slow down the loss of moisture. The Lightness (L*) of the sausage surface increased by the coating application, while the redness (a*) and yellowness (b*) did not change. The coated sausages showed a better color stability of the sausage core through the storage time. Also, coated sausage showed a better oxidative stability till the 60th day of storage, while this difference was not detected at the end of the storage period. Apart from slowing down sausage drying during the storage, chitosan-caraway coating was effective in preserving the sausage quality. [Projekat Ministarstva nauke Republike Srbije, br. TR31032
    corecore