12 research outputs found

    Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation

    Get PDF
    IntroductionMajor clinically relevant inflammatory events such as septic shock and severe COVID-19 trigger dynamic changes in the host immune system, presenting promising candidates for new biomarkers to improve precision diagnostics and patient stratification. Hepcidin, a master regulator of iron metabolism, has been intensively studied in many pathologies associated with immune system activation, however these data have never been compared to other clinical settings. Thus, we aimed to reveal the dynamics of iron regulation in various clinical settings and to determine the suitability of hepcidin and/or ferritin levels as biomarkers of inflammatory disease severity.CohortsTo investigate the overall predictive ability of hepcidin and ferritin, we enrolled the patients suffering with three different diagnoses – in detail 40 patients with COVID-19, 29 patients in septic shock and eight orthopedic patients who were compared to nine healthy donors and all cohorts to each other.ResultsWe showed that increased hepcidin levels reflect overall immune cell activation driven by intrinsic stimuli, without requiring direct involvement of infection vectors. Contrary to hepcidin, ferritin levels were more strongly boosted by pathogen-induced inflammation – in septic shock more than four-fold and in COVID-19 six-fold in comparison to sterile inflammation. We also defined the predictive capacity of hepcidin-to-ferritin ratio with AUC=0.79 and P = 0.03.DiscussionOur findings confirm that hepcidin is a potent marker of septic shock and other acute inflammation-associated pathologies and demonstrate the utility of the hepcidin-to-ferritin ratio as a predictor of mortality in septic shock, but not in COVID-19

    Persisting IL-18 levels after COVID-19 correlate with markers of cardiovascular inflammation reflecting potential risk of CVDs development

    No full text
    COVID-19 manifestation is associated with a strong immune system activation leading to inflammation and subsequently affecting the cardiovascular system. The objective of the study was to reveal possible interconnection between prolongated inflammation and the development or exacerbation of long-term cardiovascular complications after COVID-19. We investigated correlations between humoral and cellular immune system markers together with markers of cardiovascular inflammation/dysfunction during COVID-19 onset and subsequent recovery. We analyzed 22 hospitalized patients with severe COVID-19 within three timepoints (acute, 1 and 6 months after COVID-19) in order to track the impact of COVID-19 on the long-term decline of the cardiovascular system fitness and eventual development of CVDs. Among the cytokines dysregulated during COVID-19 changes, we showed significant correlations of IL-18 as a key driver of several pathophysiological changes with markers of cardiovascular inflammation/dysfunction. Our findings established novel immune-related markers, which can be used for the stratification of patients at high risk of CVDs for further therapy
    corecore