24 research outputs found

    Kwinking as the plastic forming mechanism of B19' NiTi martensite

    Full text link
    Irreversible plastic forming of B19^\prime martensite of the NiTi shape memory alloy is discussed within the framework of continuum mechanics. It is suggested that the main mechanism arises from coupling between martensite reorientation and coordinated [100](001)M[100](001)_{\rm M} dislocation slip. A heuristic model is proposed, showing that the (201ˉ)M{(20\bar{1})_{\rm M}} deformation-twin bands, commonly observed in experiments, can be interpreted as a combination of dislocation-mediated kink bands, appearing due to strong plastic anisotropy, and reversible twinning of martensite. We introduce a term 'kwinking' for this combination of reversible twinning and irreversible plastic kinking. The model is subsequently formulated using the tools of nonlinear elasticity theory of martensite and crystal plasticity, introducing 'kwink interfaces' as planar, kinematically compatible interfaces between two differently plastically slipped variants of martensite. It is shown that the (201ˉ)M{(20\bar{1})_{\rm M}} kwink bands may be understood as resultsing from energy minimization, and that their nucleation and growth and their pairing with (100)M(100)_{\rm M} twins into specific patterns enables low-energy plastic forming of NiTi martensite. We conclude that kwinking makes plastic deformation of B19^\prime martensite in polycrystalline NiTi possible despite only one slip system being available.Comment: Revised version of the manuscript submitted to the International Journal of Plasticit

    Environmentally assisted fatigue of superelastic NiTi

    Get PDF
    Superelastic NiTi implants transforming cyclically in body fluids suffer from fatigue failures which are extremely difficult to predict. This clearly points out towards environmental effects promoting surface dominated fatigue degradation. The specialty of phase transforming NiTi shape memory alloy is that either the parent austenite or the product martensite phase exist at the excessively deforming metal/liquid interface covered by the thin TiO2 surface. In order to explore the environmental effects at such mechanically active metal/liquid interface, we have developed dedicated electrochemical apparatus and methods combining electrochemical cell, mechanical tester and thermal chamber. We are able to follow and/or control the mechanically triggered periodical breakdown/passivation process on the metal/liquid interface occurring during cyclic tensile tests on NiTi wires and springs in fluids. In this way we are able to analyze the effect of surface finishing treatments on fatigue performance and/or control it electrochemically. In this talk, we will introduce two in-situ electrochemical methods especially open circuit potential and potentiostatic polarization applied during fatigue testing. We will focus on the problem of non-stationary thermodynamic equilibrium established at the mechanochemically loaded wire surface. Kinetics of the surface reactions encountered during this type of environmental fatigue testing will be revealed. SIMS depth profile analysis and chemical imaging of the surfaces of fatigued wires was employed to prove the assumed electrochemical activity upon cycling, particularly to the hydrogen absorption and growth of passive oxide layer within cracks. Microcracks forming on the surface of fatigued wires were observed by 3D SEM/FIB sectioning method. Based on the results, mechanisms of environmental fatigue degradation of NiTi implants deforming cyclically in body fluids will be proposed

    A multiscale study of hot-extruded CoNiGa ferromagnetic shape-memory alloys

    Get PDF
    Ferromagnetic shape-memory CoNiGa alloys have attracted much scientific interest due to their potential alternative use as high-temperature shape-memory alloys, bearing a high prospect for actuation and damping applications at elevated temperatures. Yet, polycrystalline CoNiGa, due to strong orientation dependence of transformation strains, suffers from intergranular fracture. Here, two multi-grain CoNiGa samples were prepared by a novel hot extrusion process that can promote favourable grain-boundary orientation distribution and improve the material's mechanical behaviour. The samples were investigated by multiple methods and their microstructural, magnetic, and mechanical properties are reported. It is found that a post-extrusion solutionising heat treatment leads to the formation of a two-phase oligocrystalline homogeneous microstructure consisting of an austenitic parent B2 phase and γ-CoNiGa precipitates. Reconstruction of the full 3D grain morphology revealed large, nearly spherical grains with no low-angle grain boundaries throughout the entire sample volume. The presence of γ precipitation affects the transformation behaviour of the samples, by lowering the martensitic transformation temperature, while, in conjunction with the oligocrystalline microstructure, it improves the ductility. Controlling the composition of the B2 matrix, as well as the phase fraction of the γ phase, is thus crucial for the optimal behaviour of the alloys

    Microstructure and precipitates in annealed Co38Ni33Al29 ferromagnetic shape memory alloy

    Get PDF
    Transmission electron microscopy was performed to investigate the microstructure and precipitates in the annealed Co38Ni33Al29 ferromagnetic shape memory alloy. Apart from the dendritic secondary phase in the austenite matrix, micron-sized (up to 100 μm) fcc-based precipitates with partial γ′ L12 ordering and containing none, one or three {1 1 1}p parallel twin planes were found. The orientation relationship between the precipitates and matrix was found to be Kurdjumov–Sachs. STEM–EDX analysis indicates that twinned and non-twinned precipitates are Co-rich and Al- and Ni-deficient with respect to the matrix and with a lower Co/Al ratio for the latter. The 3D morphologies of precipitates were reconstructed with focused ion beam/scanning electron microscope dual-beam slice-and-view imaging, showing that the single {1 1 1}p plane twinned precipitates have a plate-like shape while the non-twinned precipitates are lath-like and often bent

    Interfacial Adhesion of Thick NiTi Coating on Substrate Stainless Steel

    No full text
    Interfacial adhesion of thick NiTi coating on substrate stainless steel is investigated here. NiTi coating was deposited on the substrate by using the thermal plasma spraying method. Deposition of NiTi coating was carried out by using various levels of input power under an Ar atmosphere. Multiple coating layers were deposited on the stainless steel surface for a specific thickness. The cross-section of the plasma-sprayed samples were prepared and characterized by using various techniques. The hardness of the coating layers on the surface and cross-section was examined. The thickness of the coating increased with the increase in power. No cracks were detected in the interface for the NiTi coating deposited at 12 kW power. However minor pores were observed at some regions along the interface at the sample prepared at 9 kW power. A good-quality coating layer was formed at the interface of the substrate. Primary phases of austenite and martensite were confirmed from the EBSD and XRD investigations. There was the presence of intermetallic and oxide phases in the coating layers. A less heat-affected zone of 10 µm of along the interface was confirmed without any diffusion of elements from the substrate to the coating layers. There was homogenous distribution elemental composition of Ni and Ti throughout the coating layers

    Preface

    No full text

    Experimental and Numerical Investigation of Thermomechanical Cycling of Notched NiTi Shape Memory Ribbon Using SMA Model Accounting for Plastic Deformation

    Get PDF
    Shape memory alloys (SMAs) are being increasingly applied as thermally driven actuators. The commercially available SMA elements, however, frequently contain stress risers, either due to internal or surface defects or due to the required component shape. Stress risers represent a potential danger for the preliminary fatigue failure of such actuators but its actual mechanism is not very clear. This paper presents a combined experimental (2D DIC analysis of surface strains) and numerical analysis (SMA model with plastic deformation) of the stress, strain and phase fraction fields evolving in a thin NiTi shape memory ribbon with an artificial notch subjected to cyclic cooling-heating through transformation range under constant external force. It appeared that, even if only very low tensile stress is externally applied upon thermal cycling, local tensile stress at the notch tip sharply increases during the first cooling due to the forward martensitic transformation (MT) proceeding heterogeneously in space. This heterogeneity gives rise to plastic deformation at the notch-tip, which gradually accumulates upon thermal cycling and shields the notch tip from tensile overloading. Hence, fatigue performance of thermal NiTi actuator with stress riser depends very much on the plastic deformability of the alloy

    Strength of Superelastic NiTi Velcro-Like Fasteners

    No full text
    Velcro hook-and-loop fasteners invented more than 70 years ago are examples of the mechanism inspired by the tiny hooks found on the surface of burs of a plant commonly known as burdock. Several years ago, a novel Velcro-like fastener made of two arrays of hook-shaped thin NiTi wires was developed. Unique features of such fasteners, such as high thermally-tunable strength, fair force–stroke reproducibility, forceless contact or silent release, all derive from the superelasticity of the NiTi micro-wires. Recently, it was noticed that the presented fastener design allowed for a prediction of the number of active hooks. In this continuing study, the tension strength of the fastener was simulated as a function of hook density. Based on statistics, the model showed non-linear dependency of the number of interlocked hooks, N, on the hook density, m (N = round (0.21 m + 0.0035 m2 − 6.6)), for the simple hook pairs and the given hook geometry. The dependence of detachment force on stroke was simulated based on the Gaussian distribution of unhooking of individual hook connections along the stroke. The strength of the studied NiTi hook fasteners depended on hook density approximately linearly. The highest strength per cm2 reached at room temperature was 10.5 Ncm−2 for a density of m = 240 hooks/cm2
    corecore