425 research outputs found

    Effect of Dietary Chitin and Chitosan on Cholesterolemia of Rats

    Full text link

    EverMiner - towards Fully Automated KDD Process

    Get PDF

    Recent Developments and Applications of the HYDRUS Computer Software Packages

    Full text link
    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite-element models for simulating the one- and two- or three-dimensional movement of water, heat, and multiple solutes in variably saturated media, respectively. In 2008, Šimůnek et al. (2008b) described the entire history of the development of the various HYDRUS programs and related models and tools such as STANMOD, RETC, ROSETTA, UNSODA, UNSATCHEM, HP1, and others. The objective of this manuscript is to review selected capabilities of HYDRUS that have been implemented since 2008. Our review is not limited to listing additional processes that were implemented in the standard computational modules, but also describes many new standard and nonstandard specialized add-on modules that significantly expanded the capabilities of the two software packages. We also review additional capabilities that have been incorporated into the graphical user interface (GUI) that supports the use of HYDRUS (2D/3D). Another objective of this manuscript is to review selected applications of the HYDRUS models such as evaluation of various irrigation schemes, evaluation of the effects of plant water uptake on groundwater recharge, assessing the transport of particle-like substances in the subsurface, and using the models in conjunction with various geophysical methods

    Effect of Age of Cockerels on the Tranquilizing Eificacy of Diazepam

    Full text link

    Cellulolytic Bacteria in Human Gut and Irritable Bowel Syndrome

    Full text link

    Nitrate subsurface transport and losses in response to its initial distributions in sloped soils: An experimental and modelling study

    Get PDF
    Transport and losses of nitrate from sloped soils are closely linked to nitrogen fertilizer management. Previous studies have always focused on different types of fertilizer applications and rarely analysed various initial nitrate distributions as a result of nitrogen fertilizer applications. Under certain conditions, both subsurface lateral saturated flow and vertical leaching dominate nitrate losses. Soil tank experiments and HYDRUS-2D modelling were used to better understand the subsurface nitrate transport and losses through lateral saturated flow and vertical leaching under various initial nitrate distributions. Low (L: 180 mg L−1), normal (N: 350 mg L−1), and high (H: 500 mg L−1) nitrate concentrations were used in five different distributions (NNNN, NLLN, LHHL, LNLN, and HNHN) along the slope of the tank. The first two treatments (NNNN and NLLN) were analysed both experimentally and numerically. Experiments were conducted under 12 rainfall events at intervals of 3 days. The HYDRUS-2D model was calibrated and validated against the experimental data and demonstrated good model performance. The other three treatments (LHHL, LNLN, and HNHN) were investigated using the calibrated model. Nitrate concentrations in purple sloped soils declined exponentially with time under intermittent rainfalls, predominantly in the upper soil layers. Non-uniform initial nitrate distributions contributed to larger differences between four locations along the slope in deeper soil layers. The non-uniform nitrate distribution either enhanced or reduced decreases in nitrate concentrations in areas with higher or lower initial nitrate concentrations, respectively. Higher nitrate concentrations at the slope foot and along the slope were reduced mainly by lateral flow and vertical leaching, respectively. Increasing nitrogen application rates increased subsurface nitrate losses. Mean subsurface lateral nitrate fluxes were twice as large as mean vertical leaching nitrate fluxes. However, due to longer leaching durations, total nitrate losses due to vertical leaching were comparable with those due to lateral flow, which indicated comparable environmental risks to surface waters and groundwater
    corecore