3 research outputs found

    Mapping species richness of plant families in European vegetation

    Get PDF
    Aims: Biodiversity is traditionally studied mostly at the species level, but biogeographical and macroecological studies at higher taxonomic levels can provide valuable insights into the evolutionary processes at large spatial scales. Our aim was to assess the representation of vascular plant families within different vegetation formations across Europe. Location: Europe. Methods: We used a data set of 816,005 vegetation plots from the European Vegetation Archive (EVA). For each plot, we calculated the relative species richness of each plant family as the number of species belonging to that family divided by the total number of species. We mapped the relative species richness, averaged across all plots in 50 km × 50 km grid cells, for each family and broad habitat groups: forests, grasslands, scrub and wetlands. We also calculated the absolute species richness and the Shannon diversity index for each family. Results: We produced 522 maps of mean relative species richness for a total of 152 vascular plant families occurring in forests, grasslands, scrub and wetlands. We found distinct spatial patterns for many combinations of families and habitat groups. The resulting series of 522 maps is freely available, both as images and GIS layers. Conclusions: The distinct spatial patterns revealed in the maps suggest that the relative species richness of plant families at the community level reflects the evolutionary history of individual families. We believe that the maps and associated data can inspire further biogeographical and macroecological studies and strengthen the ongoing integration of phylogenetic, functional and taxonomic diversity concepts.MV, IA, JPC, ZL, IK, AJ and MC were funded by the Czech Science Foundation, programme EXPRO (project no. 19-28491X); JDi by the Czech Science Foundation (18-02773S); IB and JAC by the Basque Government (IT936-16); AČ by the Slovenian Research Agency (ARRS, P1-0236); AK by the National Research Foundation of Ukraine (project no. 2020.01/0140); JŠ by the Slovak Research and Development Agency (APVV 16-0431); KV by the National Science Fund (Contract DCOST 01/7/19.10.2018)

    Post-glacial determinants of regional species pools in alpine grasslands

    Get PDF
    [Aim] Alpine habitats support unique biodiversity confined to high-elevation areas in the current interglacial. Plant diversity in these habitats may respond to area, environment, connectivity and isolation, yet these factors have been rarely evaluated in concert. Here we investigate major determinants of regional species pools in alpine grasslands, and the responses of their constituent species groups.[Location] European mountains below 50° N.[Time period] Between 1928 and 2019.[Major taxa studied] Vascular plants.[Methods] We compiled species pools from alpine grasslands in 23 regions, including 794 alpine species and 2,094 non-alpines. We used species–area relationships to test the influence of the extent of alpine areas on regional richness, and mixed-effects models to compare the effects of 12 spatial and environmental predictors. Variation in species composition was addressed by generalized dissimilarity models and by a coefficient of dispersal direction to assess historical links among regions.[Results] Pool sizes were partially explained by current alpine areas, but the other predictors largely contributed to regional differences. The number of alpine species was influenced by area, calcareous bedrock, topographic heterogeneity and regional isolation, while non-alpines responded better to connectivity and climate. Regional dissimilarity of alpine species was explained by isolation and precipitation, but non-alpines only responded to isolation. Past dispersal routes were correlated with latitude, with alpine species showing stronger connections among regions.[Main conclusions] Besides area effects, edaphic, topographic and spatio-temporal determinants are important to understand the organization of regional species pools in alpine habitats. The number of alpine species is especially linked to refugia and isolation, but their composition is explained by past dispersal and post-glacial environmental filtering, while non-alpines are generally influenced by regional floras. New research on the dynamics of alpine biodiversity should contextualize the determinants of regional species pools and the responses of species with different ecological profiles.The authors thank Daniela Gaspar for support in GIS analyses. B.J.-A. thanks the Marie Curie Clarín-COFUND program of the Principality of Asturias-EU (ACB17-26), the regional grant IDI/2018/000151, and the Spanish Research Agency grant AEI/ 10.13039/501100011033. J.V.R.-D. was supported by the ACA17-02FP7 Marie Curie COFUND-Clarín grant. G.P.M. was funded by US National Science Foundation award 1853665. C.M. was funded by grant no. 19-28491 of the Czech Science Foundation.Peer reviewe

    Post-glacial determinants of regional species pools in alpine grasslands

    No full text
    Aim Alpine habitats support unique biodiversity confined to high-elevation areas in the current interglacial. Plant diversity in these habitats may respond to area, environment, connectivity and isolation, yet these factors have been rarely evaluated in concert. Here we investigate major determinants of regional species pools in alpine grasslands, and the responses of their constituent species groups. Location European mountains below 50 degrees N. Time period Between 1928 and 2019. Major taxa studied Vascular plants. Methods We compiled species pools from alpine grasslands in 23 regions, including 794 alpine species and 2,094 non-alpines. We used species-area relationships to test the influence of the extent of alpine areas on regional richness, and mixed-effects models to compare the effects of 12 spatial and environmental predictors. Variation in species composition was addressed by generalized dissimilarity models and by a coefficient of dispersal direction to assess historical links among regions. Results Pool sizes were partially explained by current alpine areas, but the other predictors largely contributed to regional differences. The number of alpine species was influenced by area, calcareous bedrock, topographic heterogeneity and regional isolation, while non-alpines responded better to connectivity and climate. Regional dissimilarity of alpine species was explained by isolation and precipitation, but non-alpines only responded to isolation. Past dispersal routes were correlated with latitude, with alpine species showing stronger connections among regions. Main conclusions Besides area effects, edaphic, topographic and spatio-temporal determinants are important to understand the organization of regional species pools in alpine habitats. The number of alpine species is especially linked to refugia and isolation, but their composition is explained by past dispersal and post-glacial environmental filtering, while non-alpines are generally influenced by regional floras. New research on the dynamics of alpine biodiversity should contextualize the determinants of regional species pools and the responses of species with different ecological profiles.Gobierno del Principado de AsturiasAgencia Nacional de Investigación e InnovaciónFundación para el Fomento en Asturias de la Investigación Científica Aplicada y la TecnologíaPrograma Clarín COFUNDDepto. de Farmacología, Farmacognosia y BotánicaFac. de FarmaciaTRUEpu
    corecore