11 research outputs found

    Potential of Microalgae for the Production of Different Biotechnological Products

    Get PDF
    Microalgae have been recognized as powerful phototrophic cell-factories whose applications range from biomass production for food and feed purposes to the production of high-value products and biofuels. Microalgae have been considered a source of functional ingredients, such as polyunsaturated fatty acids, polysaccharides, essential minerals, vitamins and bioactive peptides that can have positive effects on human and animal health. Besides having high nutritional value due to the high percentage of proteins in their composition, microalgae generate high-value products, such as pigments, polysaccharides, bio-hydrogen, and even bio-polyesters with plastic-like properties. Algal biomass that remains after product recovery can be used as forage, biofertilizer or feedstock for biogas production. This step in overall algal production is important from an economic point of view due to the reduction in production costs. This paper presents the detailed study of the biotechnologically most important microalgae strains, and the design principles of photobioreactors for their cultivation. In addition, the main existing and potential high-value products derivable from microalgae, as well as utilization of microalgae for phytoremediation and biogas production, were reviewed. This work is licensed under a Creative Commons Attribution 4.0 International License

    Usporedba različitih tehnika proizvodnje bioetanola iz lignoceluloznih sirovina

    Get PDF
    Bioetanol proizveden iz lignoceluloznih sirovina (npr. ostaci biomase drveta i poljoprivrednih kultura) zadovoljava kriterije ekoloÅ”ke i druÅ”tveno-političke održivosti. Međutim, troÅ”kovi proizvodnje bioetanola iz lignoceluloznih sirovina značajno su veći u odnosu na troÅ”kove proizvodnje bioetanola iz Å”ećernih i Å”krobnih sirovina. Da bi se ostvarila ekonomski održiva proizvodnja bioetanola iz lignoceluloznih sirovina neophodno je razviti i primjeniti nova tehnoloÅ”ka rjeÅ”enja. Proces proizvodnje bioetanola može se provesti pomoću različitih tehnika vođenja bioprocesa kao Å”to su npr. odvojeni proces hidrolize lignocelulozne sirovine i fermentacija njenog hidrolizata, simulatana hidroliza i fermentacija ili konsolidirani bioprocesni sustav. Budući da se tehnika odvojene hidrolize i fermentacije već koristi u industrijskom mjerilu za daljnji razvoj procesa proizvodnje bioetanola iz lignoceluloznih sirovina najveći potencijal ima tehnika simultane hidrolize i fermentacije zbog smanjene mogućnosti pojave inhibicije supstratom (ili drugim sastojcima hidrolizata sirovina) odnosno smanjenja kapitalnih troÅ”kova bioprocesa. Kontinuirani postupak vođenja proizvodnje bioetanola dodatno povećava učinkovitost bioprocesa, te smanjuje njegove operativne troÅ”kove. Međutim, glavni nedostaci kontinuiranog postupka su povećana mogućnost kontaminacije, nastajanje i nakupljanje nepoželjnih nusproizvoda odnosno povećani kapitalni troÅ”kovi bioprocesa. U ovome radu dan je pregled različitih tehnika proizvodnje bioetanola iz lignoceluloznih sirovina, te su ti bioprocesi međusobno uspoređeni na osnovi pokazatelja uspjeÅ”nosti bioprocesa

    Bioethanol Production from Dilute-acid Pre-treated Wheat Straw Liquor Hydrolysate by Genetically Engineered Saccharomyces cerevisiae

    Get PDF
    Sustainable recycling of lignocellulosic biomass includes utilization of all carbohydrates present in its hydrolysates. Since wheat straw is a xylose-rich raw material, utilization of xylose from obtained liquid part (liquor) of hydrolysates improves overall bioprocess efficiency. In this work, dilute acid pre-treatment of wheat straw was performed in high-pressure reactor at different temperatures (160 Ā°C ā€“ 200 Ā°C), residence times (1 min ā€“ 10 min), and acids (H2SO4 and H3PO4) concentrations. During dilute acid pre-treatment, hemicellulose is degraded to pentose sugars that cannot be used by industrial ethanol-producing yeasts. Therefore, genetically engineered Saccharomyces cerevisiae strain that can utilize xylose was used. Fermentations were performed on different xylose-rich liquor wheat straw hydrolysates in shake-flasks and in horizontal rotating tubular bioreactor. The efficiency of fermentations carried out in shake flasks using xylose-rich liquor wheat straw hydrolysates were in the range of 19.61 ā€“ 74.51 %. However, the maximum bioprocess efficiency (88.24 %) was observed during fermentation in the HRTB on the liquor wheat straw hydrolysate obtained by pre-treatment with 2 % w/w phosphoric acid

    Usporedba različitih tehnika proizvodnje bioetanola iz lignoceluloznih sirovina

    Get PDF
    Bioetanol proizveden iz lignoceluloznih sirovina (npr. ostaci biomase drveta i poljoprivrednih kultura) zadovoljava kriterije ekoloÅ”ke i druÅ”tveno-političke održivosti. Međutim, troÅ”kovi proizvodnje bioetanola iz lignoceluloznih sirovina značajno su veći u odnosu na troÅ”kove proizvodnje bioetanola iz Å”ećernih i Å”krobnih sirovina. Da bi se ostvarila ekonomski održiva proizvodnja bioetanola iz lignoceluloznih sirovina neophodno je razviti i primjeniti nova tehnoloÅ”ka rjeÅ”enja. Proces proizvodnje bioetanola može se provesti pomoću različitih tehnika vođenja bioprocesa kao Å”to su npr. odvojeni proces hidrolize lignocelulozne sirovine i fermentacija njenog hidrolizata, simulatana hidroliza i fermentacija ili konsolidirani bioprocesni sustav. Budući da se tehnika odvojene hidrolize i fermentacije već koristi u industrijskom mjerilu za daljnji razvoj procesa proizvodnje bioetanola iz lignoceluloznih sirovina najveći potencijal ima tehnika simultane hidrolize i fermentacije zbog smanjene mogućnosti pojave inhibicije supstratom (ili drugim sastojcima hidrolizata sirovina) odnosno smanjenja kapitalnih troÅ”kova bioprocesa. Kontinuirani postupak vođenja proizvodnje bioetanola dodatno povećava učinkovitost bioprocesa, te smanjuje njegove operativne troÅ”kove. Međutim, glavni nedostaci kontinuiranog postupka su povećana mogućnost kontaminacije, nastajanje i nakupljanje nepoželjnih nusproizvoda odnosno povećani kapitalni troÅ”kovi bioprocesa. U ovome radu dan je pregled različitih tehnika proizvodnje bioetanola iz lignoceluloznih sirovina, te su ti bioprocesi međusobno uspoređeni na osnovi pokazatelja uspjeÅ”nosti bioprocesa

    Hop pellets type 90: Influence of manufacture and storage on losses of Ī±-acids

    No full text
    Hop pellets type 90 are the most frequent hop products used in brewing. They are usually manufactured by drying hop cones, temporary storage of dry and pressed cones, milling and pelletising. Other possibility is a complete integration of hop harvest, cone drying, milling and pelletising in continuous process without temporary storage of pressed cones. The paper deals with the losses of bitter substances (primary Ī±-acids) during hop cones drying, their pelletisation by two manufacturing procedures and storage in different conditions. The results of this study show that integrated procedure of hop pelletising decreases the total loss of Ī±-acids compared to the usual procedure. During storage of hop pellets (produced by integrated procedure) the highest decrease (loss) of Ī±-acids content was observed in pellets stored at 21 Ā°C in the presence of air and the lowest under inert atmosphere (N2) at 4 to 7 Ā°C, respectively
    corecore