4,135 research outputs found
Consciousness operates beyond the timescale for discerning time intervals: implications for Q-mind theories and analysis of quantum decoherence in brain
This paper presents in details how the subjective time is constructed by the brain cortex via reading packets of information called "time labels", produced by the right basal ganglia that act as brain timekeeper. Psychophysiological experiments have measured the subjective "time quanta" to be 40 ms and show that consciousness operates beyond that scale - an important result having profound implications for the Q-mind theory. Although in most current mainstream biophysics research on cognitive processes, the brain is modelled as a neural network obeying classical physics, Penrose (1989, 1997) and others have argued that quantum mechanics may play an essential role, and that successful brain simulations can only be performed with a quantum computer. Tegmark (2000) showed that make-or-break issue for the quantum models of mind is whether the relevant degrees of freedom of the brain can be sufficiently isolated to retain their quantum coherence and tried to settle the issue with detailed calculations of the relevant decoherence rates. He concluded that the mind is classical rather than quantum system, however his reasoning is based on biological inconsistency. Here we present detailed exposition of molecular neurobiology and define the dynamical timescale of cognitive processes linked to consciousness to be 10-15 ps showing that macroscopic quantum coherent phenomena in brain are not ruled out, and even may provide insight in understanding life, information and consciousness
Revisiting the microtubule based quantum models of mind: tubulin bound GTP cannot pump microtubule coherence or provide energy for alpha <-> beta computation in stable microtubules
The current paper investigates the biological models of stable brain microtubules as quantum or classical computers whose function is based on electron hopping associated with kinking of the tubulin dimer. Hameroff (1998a, 1998b, 2003a, 2003b), Tuszynski et al. (1998), Hagan et al. (2000), Mershin et al. (1999); Mershin (2003) suppose that the energy needed could be somehow delivered via guanosine diphosphate (GDP) exchange for guanosine triphosphate (GTP) or via cycles of tubulin bound GTP hydrolysis. Here is presented biological and structural data from electron diffraction studies performed by Lowe et al. (2001) and computer simulation with MDL Âź Chime Version 2.6 SP4, explaining and visualizing the inconsistency of the proposed tubulin bit (qubit) GTP energized alpha <-> beta computation and/or tubulin bound GTP pumped coherence in stable microtubules
Solving the binding problem: cellular adhesive molecules and their control of the cortical quantum entangled network
Quantum entanglement is shown to be the only acceptable physical solution to the binding problem. The biological basis of interneuronal entanglement is described in the frames of the beta-neurexin-neuroligin model developed by Georgiev (2002) and is proposed novel mechanism for control of the neurons that are temporarily entangled to produce every single conscious moment experienced as present. The model provides psychiatrists with âdeeperâ understanding of the functioning of the psyche in normal and pathologic conditions
Test of lepton universality and search for lepton flavor violation in Upsilon(1S,2S,3S) decays at CLEO
We present the analysis technique and preliminary results of two ongoing
analyses at CLEO which put lepton universality and lepton flavor conservation
to the test in Upsilon decays.Comment: 3 pages, contributed to the proceedings of Particles and Nuclei
International Conference (PANIC05), October 24-28, 2005, Santa Fe, New
Mexico, US
Practopoiesis: Or how life fosters a mind
The mind is a biological phenomenon. Thus, biological principles of
organization should also be the principles underlying mental operations.
Practopoiesis states that the key for achieving intelligence through adaptation
is an arrangement in which mechanisms laying a lower level of organization, by
their operations and interaction with the environment, enable creation of
mechanisms lying at a higher level of organization. When such an organizational
advance of a system occurs, it is called a traverse. A case of traverse is when
plasticity mechanisms (at a lower level of organization), by their operations,
create a neural network anatomy (at a higher level of organization). Another
case is the actual production of behavior by that network, whereby the
mechanisms of neuronal activity operate to create motor actions. Practopoietic
theory explains why the adaptability of a system increases with each increase
in the number of traverses. With a larger number of traverses, a system can be
relatively small and yet, produce a higher degree of adaptive/intelligent
behavior than a system with a lower number of traverses. The present analyses
indicate that the two well-known traverses-neural plasticity and neural
activity-are not sufficient to explain human mental capabilities. At least one
additional traverse is needed, which is named anapoiesis for its contribution
in reconstructing knowledge e.g., from long-term memory into working memory.
The conclusions bear implications for brain theory, the mind-body explanatory
gap, and developments of artificial intelligence technologies.Comment: Revised version in response to reviewer comment
Perspectives for proof unwinding by programming languages techniques
In this chapter, we propose some future directions of work, potentially
beneficial to Mathematics and its foundations, based on the recent import of
methodology from the theory of programming languages into proof theory. This
scientific essay, written for the audience of proof theorists as well as the
working mathematician, is not a survey of the field, but rather a personal view
of the author who hopes that it may inspire future and fellow researchers
- âŠ