3 research outputs found

    Identifying future district heating potentials in Germany: a study using empirical insights and distribution cost analysis

    Get PDF
    District heating will play an important role in the transition towards climate-neutral heating. Various studies on modelling the energy system show that district heating and the related expansion of the networks can have different levels of importance. A main reason is that the costs for distribution grid expansion are not well or not at all considered and empirical evidence for a threshold for cost-effective distribution costs is missing in such studies. In this paper, we aim to improve empirical evidence allowing to improve the representation of future district heating expansion in energy systems models. For that, the current status of district heating is analysed in high spatial resolution for Germany. The results show that with the currently accepted average costs, a large range of the possible future market share of district heating for buildings between 17 - 52% is possible by 2050, with the parameters of the connection rate and the renovation rate of the building stock. We conclude that the district heating share could be increased by the factor of 2 to 5 in the future, proving the importance of climate-neutral district heating in the transition

    Identifying future district heating potentials in germany: a study using empirical insights and distribution cost analysis

    Get PDF
    District heating will play an important role in the transition towards climate-neutral heating. Various studies on modelling the energy system show that district heating and the related expansion of the networks can have different levels of importance. A main reason is that the costs for distribution grid expansion are not well or not at all considered and empirical evidence for a threshold for cost-effective distribution costs is missing in such studies. In this paper, we aim to improve empirical evidence allowing to improve the representation of future district heating expansion in energy systems models. For that, the current status of district heating is analysed in high spatial resolution for Germany. The results show that with the currently accepted average costs, a large range of the possible future market share of district heating for buildings between 17–52% is possible by 2050, with the parameters of the connection rate and the renovation rate of the building stock. We conclude that the district heating share could be increased by the factor of 2 to 5 in the future, proving the importance of climate-neutral district heating in the transition

    How do system-wide net-zero scenarios compare to sector model pathways for the EU? A novel approach based on benchmark indicators and index decomposition analyses

    No full text
    The use of scenarios and quantitative modelling to identify pathways for energy system transformations in line with the Paris targets is well established in the field of energy and climate policy. The resulting decarbonization pathways depend on both assumptions and the type of model used (e.g., integrated assessment models, energy system, macro-econometric or bottom-up sector models). The objective of this article is to analyze how energy demand sectors in system-wide net-zero scenarios for the EU compare to the results of sector-specific models. To this end, a novel approach referred to as “sectoral benchmarking” is developed and applied, combining the application of standard indicators such as energy intensity, electrification rate or carbon intensity with an index decomposition analysis. The combined approach allows visualizing how system-wide decarbonization pathways differ from the sector models' pathways by bringing the model output in a harmonized format for an efficient comparison. The analysis compares pathways from four different modelling tools: two European system models, one of which is an energy system model (EU TIMES) and the other a macro-econometric model (NEMESIS); as well as two sector-specific models, for transport (ALADIN) and for the industry and building sectors (FORECAST). We evaluate the system model's net-zero scenarios by comparing them to a corridor given by the sector models' current policy and net-zero emission scenarios. This corridor represents what the sector models deem as plausible from their bottom-up perspective within the boundaries of current policies and ambitions to reach net-zero.Our results show that the system model net-zero pathways differ substantially from the sectoral perspective in all sectors. In the industry and building sectors, both system models' decarbonization ambitions are within the sector corridor, but the employed mitigation levers differ. In the industry sectors, the sectoral model achieves substantial CO2 emission reductions with electrification, while the system models use more bioenergy (EU TIMES) or more energy efficiency (NEMESIS). In the building sector, both system models rely mostly on electrification, while the sector models relies on biomass and some district heat and electrification. In the transport sector, both system models' decarbonization ambition is substantially lower than the sector model's.The observed differences are caused by a variety of factors, which we evaluate in this article. One reason is the system models' lower ambition to decarbonize the end-use sectors due to their ability to compensate with negative emission technologies across sectors. In addition, employed mitigation levers differ due to the models' differing capabilities to consider technologies as well as differences in the allocation of bioenergy to sectors.Our findings can be used to determine how the different types of models can inform each other and to make the diverging decarbonization pathways more transparent to policy-makers and other relevant stakeholders
    corecore