45 research outputs found

    Mechanistic insight into the impact of a bivalent ligand on the structure and dynamics of a GPCR oligomer

    Get PDF
    Development of effective bivalent ligands has become the focus of intensive research toward modulation of G protein-coupled receptor (GPCR) oligomers, particularly in the field of GPCR pharmacology. Experimental studies have shown that they increased binding affinity and signaling potency compared to their monovalent counterparts, yet underlying molecular mechanism remains elusive. To address this, we performed accelerated molecular dynamics simulations on bivalent-ligand bound Adenosine 2A receptor (A2AR) dimer in the context of a modeled tetramer, which consists of A2AR and dopamine 2 receptor (D2R) homodimers and their cognate G proteins. Our results demonstrate that bivalent ligand impacted interactions between pharmacophore groups and ligand binding residues, thus modulating allosteric communication network and water channel formed within the receptor. Moreover, it also strengthens contacts between receptor and G protein, by modulating the volume of ligand binding pocket and intracellular domain of the receptor. Importantly, we showed that impact evoked by the bivalent ligand on A2AR dimer was also transmitted to apo D2R, which is part of the neighboring D2R dimer. To the best of our knowledge, this is the first study that provides a mechanistic insight into the impact of a bivalent ligand on dynamics of a GPCR oligomer. Consequently, this will pave the way for development of effective ligands for modulation of GPCR oligomers and hence treatment of crucial diseases such as Parkinson's disease and cancer.European Cooperation in Science and Technology (COST

    A new ratio-metric pH probe, "ThiAKS Green" for live-cell pH measurements

    Get PDF
    Deviation of the H+ concentration from optimum values within the organelles is closely associated with irregular cellular functions that cause the onset of various diseases. Therefore, determining subcellular pH values in live cells and tissues is valuable for diagnostic purposes. In this study, we report a novel ratiometric fluorescence probe 1H-pyrazole-3-carboxylic acid, 4-(benzo[d]thiazol-2-yl)-3-(2,4-dihydroxy-3-methylphenyl)-1H-pyrazole-5-carboxylicacid4-(2-benz othiazolyl)-5-(2,4-dihydroxy-3-methylphenyl), to which we will refer as ThiAKS Green (Thiazole AKyol shifting green), that is pH sensitive. The results presented here show that the probe can penetrate the cell membrane in less than 30 minutes and does not show any detectable toxicity. The measured color shifts up on pH change are linear and most significant around physiological pH (pKa=7.45), thus making this probe suitable for live-cell imaging and intracellular pH measurements. During the long-incubation periods following the application of the probe and the fluorescent microscopy measurements, it shows stable properties and is easy to detect in live cells. In conclusion, the results suggest that ThiAKS Green can be used to obtain precise information on the H+ distribution at various compartments of the live cells.Golg

    Inhibition of mutant RAS-RAF interaction by mimicking structural and dynamic properties of phosphorylated RAS

    Get PDF
    Undruggability of RAS proteins has necessitated alternative strategies for the development of effective inhibitors. In this respect, phosphorylation has recently come into prominence as this reversible post-translational modification attenuates sensitivity of RAS towards RAF. As such, in this study, we set out to unveil the impact of phosphorylation on dynamics of HRASWT and aim to invoke similar behavior in HRASG12D mutant by means of small therapeutic molecules. To this end, we performed molecular dynamics (MD) simulations using phosphorylated HRAS and showed that phosphorylation of Y32 distorted Switch I, hence the RAS/RAF interface. Consequently, we targeted Switch I in HRASG12D by means of approved therapeutic molecules and showed that the ligands enabled detachment of Switch I from the nucleotide-binding pocket. Moreover, we demonstrated that displacement of Switch I from the nucleotide-binding pocket was energetically more favorable in the presence of the ligand. Importantly, we verified computational findings in vitro where HRASG12D/RAF interaction was prevented by the ligand in HEK293T cells that expressed HRASG12D mutant protein. Therefore, these findings suggest that targeting Switch I, hence making Y32 accessible might open up new avenues in future drug discovery strategies that target mutant RAS proteins

    Computational approaches in antibody-drug conjugate optimization for targeted cancer therapy

    Get PDF
    WOS: 000444683500007PubMed ID: 30068276Cancer has become one of the main leading causes of morbidity and mortality worldwide. One of the critical drawbacks of current cancer therapeutics has been the lack of the target-selectivity, as these drugs should have an effect exclusively on cancer cells while not perturbing healthy ones. In addition, their mechanism of action should be sufficiently fast to avoid the invasion of neighbouring healthy tissues by cancer cells. The use of conventional chemotherapeutic agents and other traditional therapies, such as surgery and radiotherapy, leads to off-target interactions with serious side effects. In this respect, recently developed target-selective Antibody-Drug Conjugates (ADCs) are more effective than traditional therapies, presumably due to their modular structures that combine many chemical properties simultaneously. In particular, ADCs are made up of three different units: a highly selective Monoclonal antibody (Mab) which is developed against a tumour-associated antigen, the payload (cytotoxic agent), and the linker. The latter should be stable in circulation while allowing the release of the cytotoxic agent in target cells. The modular nature of these drugs provides a platform to manipulate and improve selectivity and the toxicity of these molecules independently from each other. This in turn leads to generation of second-and third-generation ADCs, which have been more effective than the previous ones in terms of either selectivity or toxicity or both. Development of ADCs with improved efficacy requires knowledge at the atomic level regarding the structure and dynamics of the molecule. As such, we reviewed all the most recent computational methods used to attain all-atom description of the structure, energetics and dynamics of these systems. In particular, this includes homology modelling, molecular docking and refinement, atomistic and coarse-grained molecular dynamics simulations, principal component and cross-correlation analysis. The full characterization of the structure-activity relationship devoted to ADCs is critical for antibody-drug conjugate research and development.Fundacao para a Ciencia e a Tecnologia (FCT) Investigator programme [IF/00578/2014]; European Social Fund; Programa Operacional Potencial Humano; Marie Sklodowska-Curie Individual Fellowship MSCA-IF-2015 [MEMBRANEPROT 659826]; European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme [CENTRO-01-0145-FEDER-000008]; European Regional Development Fund (ERDF), COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation; Portuguese national funds via FCT [POCI-01-0145-FEDER-007440]; FCT [FCT-SFRH/BPD/97650/2013]; Fundacao para a Ciencia e Tecnologia (FCT), Portugal [UID/Multi/04349/2013]Irina S. Moreira acknowledges support by the Fundacao para a Ciencia e a Tecnologia (FCT) Investigator programme - IF/00578/2014 (co-financed by European Social Fund and Programa Operacional Potencial Humano), and a Marie Sklodowska-Curie Individual Fellowship MSCA-IF-2015 [MEMBRANEPROT 659826]. This work was also financed by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme under project CENTRO-01-0145-FEDER-000008: Brain-Health 2020, and through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT, under project POCI-01-0145-FEDER-007440. Rita Melo acknowledges support from the FCT (FCT-SFRH/BPD/97650/2013). This work has been partially supported by the Fundacao para a Ciencia e Tecnologia (FCT), Portugal, through the UID/Multi/04349/2013 project in Centre for Nuclear Sciences and Technologies (C2TN)

    The single nucleotide beta-arrestin2 variant, A248T, resembles dynamical properties of activated arrestin

    Get PDF
    beta-arrestins are responsible for termination of G protein-coupled receptor (GPCR)-mediated signaling. Association of single nucleotide variants with onset of crucial diseases has made this protein family hot targets in the field of GPCR-mediated pharmacology. However, impact of these mutations on function of these variants has remained elusive. In this study, structural and dynamical properties of one of beta-arrestin2 (arrestin 3) variants, A248T, which has been identified in some cancer tissue samples, were investigated via molecular dynamics simulations. The results showed that the variant underwent structural rearrangements which are seen in crystal structures of active arrestin. Specifically, the "short helix" unravels and the "gate loop" swings forward as seen in crystal structures of receptor-bound and GPCR phosphopeptide-bound arrestin. Moreover, the "finger loop" samples upward position in the variant. Importantly, these regions harbor crucial residues that are involved in receptor binding interfaces. Cumulatively, these local structural rearrangements help the variant adopt active-like domain angle without perturbing the "polar core". Considering that phosphorylation of the receptor is required for activation of arrestin, A248T might serve as a model system to understand phosphorylation-independent activation mechanism, thus enabling modulation of function of arrestin variants which are activated independent of receptor phosphorylation as seen in cancer

    Catalytically competent non-transforming H-RASG12P mutant provides insight into molecular switch function and GAP-independent GTPase activity of RAS

    Get PDF
    RAS mutants have been extensively studied as they are associated with development of cancer; however, H-RASG12P mutant has remained untouched since it does not lead to transformation in the cell. To the best of our knowledge, this is the first study where structural/dynamical properties of H-RASG12P have been investigated -in comparison to H-RASWT, H-RASG12D, RAF-RBD-bound and GAP-bound H-RASWT- using molecular dynamics simulations (total of 9 μs). We observed remarkable differences in dynamics of Y32. Specifically, it is located far from the nucleotide binding pocket in the catalytically-active GAP-bound H-RASWT, whereas it makes close interaction with the nucleotide in signaling-active systems (H-RASG12D, KRAS4BG12D, RAF-RBD-bound H-RASWT) and H-RASWT. The accessibility of Y32 in wild type protein is achieved upon GAP binding. Interestingly; however, it is intrinsically accessible in H-RASG12P. Considering the fact that incomplete opening of Y32 is associated with cancer, we propose that Y32 can be targeted by means of small therapeutics that can displace it from the nucleotide binding site, thus introducing intrinsic GTPase activity to RAS mutants, which cannot bind to GAP. Therefore, mimicking properties of H-RASG12P in RAS-centered drug discovery studies has the potential of improving success rates since it acts as a molecular switch per se.Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK

    Palmitoylation & arrestin as alternatives to orthosteric binding sites for modulating GPCR function

    No full text
    19th IUPAB Congress / 11th EBSA Congress -- JUL 16-20, 2017 -- British Biophys Soc, Edinburgh, ScotlandWOS: 000416406201331…International Union for Pure and Applied Biophysics European Biophysical Societies' Association Institute of Physic

    Utilization of biased G protein-coupled receptor signaling towards development of safer and personalized therapeutics

    Get PDF
    WOS: 000472631000025PubMed ID: 31146474G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of beta-arrestin mediated signaling and also separability of G protein and beta-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health

    FEN BİLİMLERİ ENSTİTÜSÜ/LİSANSÜSTÜ TEZ PROJESİ

    No full text
    FONKSİYONEL ÜRÜN TASARIMI: GIDA İŞLEME VE BİYOAKTİF MOLEKÜLLERİN BİYOERİŞEBİRLİĞİ ARASINDAKİ İLİŞKİNİN DEĞERLENDİRİLMESİ

    Ekstrüzyon işleminin fonksiyonel bileşenlere etkisi

    No full text
    Meyve-sebze yan ürünleri antioksidan, lif ve fitokimyasallar açısından zengin gıda malzemeleridir. Ekstrüzyon da sebze ve meyve işleme yan ürünleri eklenmiş tüketilmeye hazır gıda üretimine oldukça uygun bir teknolojidir. Bu araştırmada sebze işleme endüstrisinin yan ürünü olan enginar yaprağı fonksiyonel bir bileşen olarak ekstrüde ürünlere eklenerek işlem öncesinde ve sonrasında gerçekleştirilecek analizler ile ekstrüzyon işleminin belirlenecek olan biyoaktif bileşenlere etkisi ile antioksidan aktivitesi ve toplam fenol içeriği üzerindeki etkileri araştırılacaktır
    corecore