3 research outputs found

    AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data.

    Get PDF
    Compensating in flow cytometry is an unavoidable challenge in the data analysis of fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent the spillover problem, with spectral unmixing an intrinsic part of such systems. The calculation of spillover coefficients from single-color controls has remained essentially unchanged since its inception, and is increasingly limited in its ability to deal with high-parameter flow cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coefficients. The approach combines automated gating of cells, calculation of an initial spillover matrix based on robust linear regression, and iterative refinement to reduce error. Moreover, autofluorescence can be compensated out, by processing it as an endogenous dye in an unstained control. AutoSpill uses single-color controls and is compatible with common flow cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the magnitude of compensation errors in high-parameter flow cytometry

    TRAPID 2.0 : a web application for taxonomic and functional analysis of de novo transcriptomes

    No full text
    Advances in high-throughput sequencing have resulted in a massive increase of RNA-Seq transcriptome data. However, the promise of rapid gene expression profiling in a specific tissue, condition, unicellular organism or microbial community comes with new computational challenges. Owing to the limited availability of well-resolved reference genomes, de novo assembled (meta)transcriptomes have emerged as popular tools for investigating the gene repertoire of previously uncharacterized organisms. Yet, despite their potential, these datasets often contain fragmented or contaminant sequences, and their analysis remains difficult. To alleviate some of these challenges, we developed TRAPID 2.0, a web application for the fast and efficient processing of assembled transcriptome data. The initial processing phase performs a global characterization of the input data, providing each transcript with several layers of annotation, comprising structural, functional, and taxonomic information. The exploratory phase enables downstream analyses from the web application. Available analyses include the assessment of gene space completeness, the functional analysis and comparison of transcript subsets, and the study of transcripts in an evolutionary context. A comparison with similar tools highlights TRAPID's unique features. Finally, analyses performed within TRAPID 2.0 are complemented by interactive data visualizations, facilitating the extraction of new biological insights, as demonstrated with diatom community metatranscriptomes
    corecore