77 research outputs found

    Adhesion of Modified Epoxy Resin to a Concrete Surface

    No full text
    The protection of building elements exposed to the weather using hydrocarbon-based agents is a comprehensive group of analyses. These agents are characterized by very high chemical resistance, waterproofness, as well as adhesion to surfaces made of various materials, i.e., concrete, steel, ceramics and wood. Modification of adhesion, which ultimately leads to an increase in the durability of a protective/face coating made of such a material, can lead to a longer life of these layers and a less frequent need for replacement or restoration. The following paper describes an experimental research program on the possibility of increasing the adhesion and durability of epoxy resin modified with the use of powder fillers. The resin can be used as a protective or top coat on the surface of concretes or mortars. The main objective of the study was to increase the adhesion of the resin to the concrete substrate, modified by grinding and sandblasting to increase the roughness. For the series studied, both the changes in physicochemical parameters, which determine how the resin penetrates the irregularities of the substrate and mechanical parameters, which mainly determine the durability of the layer made in this way, were identified. A modified version of the pull-off test was used as a method to directly evaluate the effectiveness of the modified resins

    Physical and mechanical properties of composites based on hemp shives and lime

    No full text
    One of the objectives of sustainable development in construction is the use of low-processed materials. They have a positive impact on the ecological balance of the building throughout the entire life cycle. Examples of such materials are materials of plant origin - straw, shives, cellulose fibers. They are used as thermal insulation or wall material. In recent years, hemp shives are increasingly used as a component of a lime-based composite, which performs the function of wall filling in timber frame constructions. The shives, due to the high porosity, determine the high thermal insulation properties of the composite. The physico-mechanical properties of the composite can be modified depending on various factors, including the ratio of hemp shives to the binder. The lime binder, in turn, can be modified by hydraulic and pozzolan additives. The paper presents mechanical properties (compressive and flexural strength) as well as physical properties (density, porosity, thermal conductivity coefficient, absorbability) of composites with various proportions of hemp shives of the Bialobrzeskie variety to the lime binder modified with Portland cement and metakaolinite

    Microscopic Studies of Activated Sludge Supported by Automatic Image Analysis Based on Deep Learning Neural Networks

    No full text
    Paper presents a microscopic studies of activated sludge supported by automatic image analysis based on deep learning neural networks. The organisms classified as Arcella vulgaris were chosen for the research. They frequently occur in the waters containing organic substances as well as WWTPs employing the activated sludge method. Usually, they can be clearly seen and counted using a standard optical microscope, as a result of their distinctive appearance, numerous population and passive behavior. Thus, these organisms constitute a viable object for detection task. Paper refers to the comparison of performance of deep learning networks namely YOLOv4 and YOLOv8, which conduct automatic image analysis of the afore-mentioned organisms. YOLO constitutes a one-stage object detection model that look at the analyzed image once and allow real-time detection without a marked accuracy loss. The training of the applied YOLO models was carried out using sample microscopic images of activated sludge. The relevant training data set was created by manually labeling the digital images of organisms, followed by calculation and comparison of various metrics, including recall, precision, and accuracy. The architecture of the networks built for the detection task was general, which means that the structure of the layers and filters was not affected by the purpose of using the models. Accounting mentioned universal construction of the models, the results of the accuracy and quality of the classification can be considered as very good. This means that the general architecture of the YOLO networks can also be used for specific tasks such as identification of shell amoebas in activated sludge

    The Influence of Casein Protein Admixture on Pore Size Distribution and Mechanical Properties of Lime-Metakaolin Paste

    No full text
    Biopolymers based on proteins are applied in the building materials technology to modify and improve their selected properties. These polymers are designed as natural admixtures that improve the workability of materials. Casein is an example of a protein-based organic polymer. It is a protein obtained from cow’s milk. The paper aimed at investigating the prospects of enhancing the strength properties of a binder prepared on a basis of metakaolin and hydrated lime. The mix was modified with powdered technical casein at 0.5%, 1%, 3%, and 5% as a partial replacement for the binder mix by mass. The study involved investigating the effect of the applied natural admixture on the flexural and compressive strengths, as well as pore size distribution. The average pore diameter decreased in the recipes with casein in the amount of 0.5% and 1%, while it increased when the amount of casein equaled 3% and 5%. Only the 0.5% casein admixture caused a decrease in the total porosity. The results show a clear dependence of the strength parameters on porosity. The admixture of casein significantly increased the flexural strength of the pastes, and decreased the compressive strength. The highest increase in flexural strength (by 205.7%) was caused by the admixture of 0.5% casein, while the greatest decrease in compressive strength (by 28%) was caused by the 3% casein admixture. The flexural strength was enhanced, i.a., due to the improved adhesion and mutual bonding of lime particles, resulting from the application of a sticky admixture. No notable difference was indicated during carbonation by the phenolphthalein test. The lime binder is characterized by a slow setting process and low mechanical strength. The results of the research showed the possibility of improving the flexural strength using small amounts of natural admixture, which may broaden the scope of application of this binder

    Heat Losses Caused by the Temporary Influence of Wind in Timber Frame Walls Insulated with Fibrous Materials

    No full text
    The paper presents the results of research concerning three fiber materials—mineral wool, hemp fiber and wood wool—as loose-fill thermal insulation materials. The analysis used the material parameters determined in previous works conducted by the authors, such as thermal conductivity and air permeability in relation to bulk density. These materials exhibit open porosity; thus, convection is an essential phenomenon in the heat transfer process. The paper aimed at conducting thermal simulations of various frame wall variants which were filled with the above-mentioned insulation materials. The simulations were performed with the Control Volume Method using the Delphin 5.8 software. The studies accounted for the effect of wind pressure and the time of its influence on a wall insulated by means of fiber material with a thickness of 150 as well as 250 mm. The simulation enabled us to obtain such data as maximal R-value reduction and time to return to equilibrium after filtration for the analyzed materials. The study proved that heat transfer in these insulations strongly depends on the bulk density, thickness of the insulation and wind pressure. The decrease in R is reduced as the density increases. This results from the decreased air permeability characterizing the material. Wind washing causes lower R reduction than air filtration in all models. The greater the thickness, the longer it takes for the models to return to the equilibrium state following air filtration (and wind washing). This period is comparable for air filtration and wind washing. Hemp fibers were characterized with the strongest susceptibility to air filtration; in the case of wood wool, it was also high, but lower than for hemp fibers, while mineral wool was characterized with the lowest

    Energy Simulations of a Building Insulated with a Hemp-Lime Composite with Different Wall and Node Variants

    No full text
    Thermal bridges constitute a significant share in the overall heat losses through building partitions. This is an important issue not only in traditional but also ecological buildings, where the load-bearing structure is often a wooden frame. In partitions insulated with hemp-lime composite, the skeleton is usually hidden in the insulation. However, in some nodes or jambs, wooden elements may be exposed or have a large cross-section, intensifying the heat transfer. This work presents simulations of energy demand in a single-family building insulated with hemp-lime composite, using the BSim dynamic simulation program. The calculations take into account the linear thermal transmittance of structural nodes modeled in the THERM program. The energy demand for heating and the share of thermal bridges in the heat loss of the entire building were calculated for different locations of the structural framework in the walls, as well as the size and number of windows. The share of thermal bridges in heat losses was about 10%, and the differences in energy demand for heating using various frame locations in the wall were negligible
    corecore