83 research outputs found

    Hydrostratigraphic characterisation of shallow coastal aquifers of Eastern Dahomey Basin, S/W Nigeria using integrated hydrogeophysics; implication for saltwater intrusion

    Get PDF
    This study employed electrical resistivity tomography (ERT) in characterising the shallow groundwater aquifers of Eastern Dahomey basin in southwestern Nigeria to assess the possible occurrence and distribution of saltwater within the aquifers. Electrical resistivity tomography (ERT), induced polarization (IP) and borehole logging were carried in locations with relatively enhanced electrical conductivity (EC) within the coastal zone of the basin through 97 groundwater samples from shallow wells and boreholes; 500 m-length ERT and IP sections were carried out along three traverses A–B, C–D and E–F in directions perpendicular and parallel to the coastline. Three geoelectrical layers were identified along traverse line A–B which comprises cross-sections 1, 2, 3 and 4 located around Ugbonla, Aboto and Igbokoda with layers’ resistivity and chargeability values ranging from (1–1000, 33–200 and 1–1700 Ωm), and (−50–200 Ωm, −30–200 Ωm and −50–120 Ωm, respectively, from the top to the bottom layer. These values indicated unconsolidated sand/lateritic silty clay, underlain by a sandy/silty clay layer with underlying fine-grained sand with disseminated clay lenses. The average thickness of the first two layers was 16 and 53 m while that of the third layer was undetermined. Resistivity and chargeability results from ERT and IP cross-sections along profile C–D exhibited characteristics similar to that of profile A–B with unconsolidated sands which were underlain by intercalation of sandy/silty clay and fine-grained sands with suspected clay lenses saturated with saline water. Profile E–F revealed a geoelectrical layer with low resistivity which ranged from 1–30 Ωm with the corresponding chargeability between −150–400 ms. This indicated a saline water-saturated layer of fine-grained sand and silty clay which is overlaid by the unconsolidated unconfined freshwater aquifer. Correlation of selected ERT results with borehole logs further affirmed the suspected lithology from the sections. Two scenarios of saltwater intrusions into coastal freshwater aquifer were suggested which include the presence of trapped salt-saturated clay lenses within aquifer lithology and seawater incursion induced by over-drafting of groundwater in this basin.Therefore, it identified the need for further investigation which will involve a combination of hydrochemical and isotopes to further understand the paleowater hypothesis

    Assessing the impact of climate change on groundwater quality of shallow coastal aquifer of eastern Dahomey basin, southwestern Nigeria

    Get PDF
    Despite the increasing interest in climate change and water security, research linking climate change and groundwater quality is still at an early stage. This study explores the seasonal effect of the change in biogeochemical process for the redox-sensitive ions and metals Fe 2+, Mn 2+, SO 4 2-, and NO 3 - to assess the groundwater quality of the shallow coastal aquifer of Eastern Dahomey Basin in southwestern Nigeria. Field physicochemical measurement of EC, pH TDS, Eh, salinity, temperature, and the static water level (SWL) was carried out on 250 shallow wells; 230 water samples were collected for analysis between June 2017 and April 2018. A spatial distribution map of these ions and metals showed an increasing concentration in the dry season water samples compared to those of the wet season. This higher concentration could be attributed to change in the intensity of hydrochemical processes such as evaporation, redox, and mineral precipitation. Results of linear regression modelling established significant relationships between SWL, SO 4 2-, NO 3 -, Fe, and Eh for both wet and dry seasons with the p-value falling between 75% and 95%, which can also be seen in the plots of Eh/ORP against Fe 2+, Mn 2+, SO 4 2-, and NO 3 -. These results revealed the influence of the redox process for both seasons, while also having a higher impact in the dry season while variation of concentration revealed decrease with increase in depth, which could be attributed to a decrease in well hydraulic properties and aeration. An Eh-pH geochemical diagram revealed NO 3 - as the controlling biogeochemical process over Fe in most of the sample wells. Concentrations of NO 3 -, Fe, and Mn are above the World Health Organization's (WHO) standard for drinking water in most water samples. This study has established the link between climate change and groundwater quality in shallow coastal aquifers and suggested the need for strategic groundwater management policy and planning to ameliorate groundwater quality deterioration

    Evaluation of daily gridded meteorological datasets over the Niger Delta region of Nigeria and implication to water resources management

    Get PDF
    Hydro-climatological study is difficult in most of the developing countries due to the paucity of monitoring stations. Gridded climatological data provides an opportunity to extrapolate climate to areas without monitoring stations based on their ability to repli-cate the Spatio-temporal distribution and variability of observed datasets. Simple cor-relation and error analyses are not enough to predict the variability and distribution of precipitation and temperature. In this study, the coefficient of correlation (R2), Root mean square error (RMSE), mean bias error (MBE) and mean wet and dry spell lengths were used to evaluate the performance of three widely used daily gridded precipitation, maximum and minimum temperature datasets from the Climatic Research Unit (CRU), Princeton University Global Meteorological Forcing (PGF) and Climate Fore-cast System Reanalysis (CFSR) datasets available over the Niger Delta part of Nigeria. The Standardised Precipitation Index was used to assess the confidence of using grid-ded precipitation products on water resource management. Results of correlation, er-ror, and spell length analysis revealed that the CRU and PGF datasets performed much better than the CFSR datasets. SPI values also indicate a good association between station and CRU precipitation products. The CFSR datasets in comparison with the other data products in many years overestimated and underestimated the SPI. This indicates weak accuracy in predictability, hence not reliable for water resource man-agement in the study area. However, CRU data products were found to perform much better in most of the statistical assessments conducted. This makes the methods used in this study to be useful for the assessment of various gridded datasets in various hy-drological and climatic applications

    Selection of CMIP5 GCM ensemble for the projection of spatio-temporal changes in precipitation and temperature over the Niger Delta, Nigeria

    Get PDF
    Selection of a suitable general circulation model (GCM) ensemble is crucial for effective water resource management and reliable climate studies in developing countries with constraint in human and computational resources. A careful selection of a GCM subset by excluding those with limited similarity to the observed climate from the existing pool of GCMs developed by different modeling centers at various resolutions can ease the task and minimize uncertainties. In this study, a feature selection method known as symmetrical uncertainty (SU) was employed to assess the performance of 26 Coupled Model Intercomparison Project Phase 5 (CMIP5) GCM outputs under Representative Concentration Pathway (RCP) 4.5 and 8.5. The selection was made according to their capability to simulate observed daily precipitation (prcp), maximum and minimum temperature (Tmax and Tmin) over the historical period 1980–2005 in the Niger Delta region, which is highly vulnerable to extreme climate events. The ensemble of the four top-ranked GCMs, namely ACCESS1.3, MIROC-ESM, MIROC-ESM-CHM, and NorESM1-M, were selected for the spatio-temporal projection of prcp, Tmax, and Tmin over the study area. Results from the chosen ensemble predicted an increase in the mean annual prcp between the range of 0.26% to 3.57% under RCP4.5, and 0.7% to 4.94% under RCP 8.5 by the end of the century when compared to the base period. The study also revealed an increase in Tmax in the range of 0 to 0.4 °C under RCP4.5 and 1.25–1.79 °C under RCP8.5 during the periods 2070–2099. Tmin also revealed a significant increase of 0 to 0.52 °C under RCP4.5 and between 1.38–2.02 °C under RCP8.5, which shows that extreme events might threaten the Niger Delta due to climate change. Water resource managers in the region can use these findings for effective water resource planning, management, and adaptation measures

    Potential impacts of climate change on extreme weather events in the Niger Delta part of Nigeria

    Get PDF
    The Niger Delta is the most climate-vulnerable region in Nigeria. Flooding events are recorded annually in settlements along the River Niger and its tributaries, inundating many towns and displacing people from their homes. In this study, climate change impacts from extreme meteorological events over the period 2010-2099 are predicted and analyzed. Four coupled model intercomparison project phase 5 (CMIP5) global climate models (GCMs) under respectively concentration pathways (RCP4.5 and RCP8.5) emission scenarios were used for climate change predictions. Standardized precipitation indices (SPI) of 1-month and 12-month time steps were used for extreme event assessment. Results from the climate change scenarios predict an increase in rainfall across all future periods and under both emission scenarios, with the highest projected increase during the last three decades of the century. Under the RCP8.5 emission scenario, the rainfall at Port Harcourt and Yenagoa Stations is predicted to increase by about 2.47% and 2.62% while the rainfall atWarri Station is predicted to increase by about 1.39% toward the end of the century. The 12-month SPI under RCP4.5 and RCP8.5 emission scenarios predict an exceedance in the extreme wet threshold (i.e., SPI > 2) during all future periods and across all study locations. These findings suggest an increasing risk of flooding within the projected periods. The finding can be useful to policymakers for the formulation and planning of flood mitigation and adaptation measures

    Origin and residence time of groundwater in the shallow coastal aquifer of eastern Dahomey Basin, Southwestern Nigeria, using δ18O and δD isotopes

    Get PDF
    This study employed stable isotopes of δ18O and δ2H in conjunction with other hydrological parameters to understand the origin, inferred residence time, and seasonal effect of groundwater in the shallow aquifers of the eastern Dahomey Basin. A total of 230 groundwater samples (97 in the wet season and 133 in the dry season) were collected from the borehole and shallow aquifer between May 2017 and April 2018. Groundwater analysis included major ions and δ18O and δ2H, isotopes data in precipitation from three selected Global Network of Isotope in Precipitation (GNIP) stations across West Africa, Douala in Cameroon, Cotonou in Republic of Benin, and Kano in Nigeria were used in comparative analysis. Results of the hydrochemical model revealed Ca-HCO3 and Na-Cl as dominant water types with other mixing water types such as Ca–SO4, Ca–Cl, Na–SO4, and K–Mg–HCO3, which characterised early stage of groundwater transformation as it infiltrates through vadose zone into the aquifer. δ18O and δ2H precipitation data from the three stations plotted along with the groundwater samples indicate recent meteoric water origin, with little effect of evaporation during the dry season. The plot of Total Dissolved Solids (TDS) against δ18O showed clustering of the water samples between the recharge and the evaporation zone with dry season samples trending towards increased TDS, which is an indication of the subtle effect of evaporation during this period. Tracing groundwater types along the flow paths within the basin is problematic and attributed to the heterogeneity of the aquifer with anthropogenic influences. Moreover, a comparison of the δ18O and δ2H isotopic compositions of groundwater and precipitation in the three selected stations, with their respective deuterium excess (D-excess) values established low evapotranspiration induced isotope enrichment, which could be due to higher precipitation and humidity in the region resulting in low isotope fractionation; hence, little effect of seasonal variations. The study, therefore, suggested groundwater recharge in the shallow aquifer in the eastern Dahomey Basin is of meteoric origin with a short residence time of water flows from soils through the vadose zone to the aquifers

    Groundwater quality index as a hydrochemical tool for monitoring saltwater intrusion into coastal freshwater aquifer of Eastern Dahomey Basin, Southwestern Nigeria

    Get PDF
    Saltwater intrusion into coastal freshwater aquifers is a threat to groundwater quality globally. This study aims to determine the extent of saltwater intrusion into the coastal freshwater aquifer of the Eastern Dahomey Basin (EDB), Nigeria. Groundwater chemistry was sampled and analysed for ionic ratios and interpreted using a hydrochemical facie evolution diagram (HFE-D), the saltwater mixing index (SMI) and the Groundwater quality index for saltwater intrusion (GQIswi). High EC and TDS and the concentration of dissolved ions showed increased salinity as a result of seawater intrusion in wells located around communities in Seme, Lekki, Eleko, Okun-Ajah, Ode-Mahin and Igbokoda. Correlation of ions in the wet season also suggests higher salinities which originate partly from industrial and municipal effluents especially from wells which are close to river channels, while dry season groundwater shows the dominant influence of seawater intrusion. HFE-D revealed that mixed groundwater of Na + Ca–HCO3, Na–Cl and Ca–Cl dominate the area due to gravity-driven flow leading to groundwater freshening inland from the coastline towards the northern part of the basin. The groundwater quality index from SMI and GQIswi shows areas within 3 km from the coastline that are more sensitive to saltwater intrusion based on abstraction rate and depth of the wells. The present study provides information of value to planners and policy-makers for the sustainable management and protection of coastal groundwater resources in the Eastern Dahomey Basin

    Hydrostratigraphy and hydraulic characterisation of the shallow coastal aquifer, Niger-Delta Basin : a strategy for groundwater resources management

    Get PDF
    The groundwater from shallow coastal aquifers in Nigeria has been reported to be under intense stress resulting from both natural and anthropogenic impacts ranging from saltwater intrusion, contamination and pollution from effluent-related to oil spillage, gas flaring, municipal, industries and agriculture. Here we characterize the hydro-stratigraphy and hydraulic characteristics of the shallow coastal aquifers of the Niger Delta Basin and assess the resilience of groundwater to both natural and anthropogenic impacts. Fifty-two borehole logs were analysed from which lithological section were used to generate cross-sections along with four profiles. The system is more complex than previously reported, a unit of silty sand was observed in the western part of the basin thins out leaving the eastern part of the basin as an unconfined aquifer underlain by multiple thin beds of the sand aquifer. A layered sand aquifer occurs in the northern parts of the basin which hold freshwater in this area, and is interbedded by clay layers which serve as aquitards. The relatively higher Hydraulic conductivity of Benin formation units compared to those of the Deltaic formation leave it with weaker climate change resilience and more vulnerable to pollution and contamination. While groundwater remains the dominant source of fresh water in the northern part of the basin, a strategic approach is needed to access potable water from the southern part where contaminated surface water directly appears to interact with groundwater of the uppermost unconfined aquifer. Management of waste and effluent-related to oil spillage, municipal, industries and agricultural in this should be engineered to protect the groundwater resources of this aquifer

    Hydrogeochemistry and water quality index for groundwater sustainability in the Komadugu-Yobe Basin, Sahel Region

    Get PDF
    The assessment of hydrochemical characteristics and groundwater quality is crucial for environmental sustainability in developing economies. This study employed hydrogeochemical analysis, geospatial analysis, and groundwater quality index to assess hydrogeochemical processes and quality of groundwater in the Komadugu-Yobe basin. The pH, total dissolved solids (TDS), and electrical conductivity (EC) were assessed in situ using a handheld portable electrical conductivity meter. The concentrations of the major cations (Na+, Ca2+, Mg2+, and K+), were analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES). The major anions (chloride, fluoride, sulfate, and nitrate) were analyzed via ion chromatography (IC). Total alkalinity and bicarbonate were measured in situ using a HACH digital alkalinity kit by the titrimetric method. Hydrochemical results indicate some physicochemical properties of the groundwater samples exceeded the maximum permissible limits as recommended by the World Health Organization guidelines for drinking water. Gibbs diagrams indicate rock–water interaction/rock weathering processes are the dominant mechanisms influencing the groundwater chemistry. Groundwater is predominantly Ca2+-Mg2+-HCO−3 water type, constituting 59% of the groundwater samples analyzed. The groundwater quality index (GWQI) depicted 63 and 27% of the groundwater samples as excellent and good water types for drinking purposes, respectively. This study further relates the interaction between geology, hydrochemical characteristics, and groundwater quality parameters. The results are essential to inform a sustainable management strategy and protection of groundwater resources

    Paleo-geohydrology of Lake Chilwa, Malawi is the source of localised groundwater salinity and rural water supply challenges

    Get PDF
    Meeting long-term rural community water supply needs requires diligent geohydrological conceptualisation. Study of Malawi’s Lake Chilwa Basin, including sampling of 330 water points in Phalombe District, enabled assessment of groundwater quality influence upon supply. The control of larger Lake Chilwa paleo-environments on current Basin groundwater quality is demonstrated. Lacustrine sediment deposition forming high-level deposits under open lake conditions and terrace deposits under open and closed lake conditions significantly control the groundwater major-ion quality and salinity now observed. Paleo-lake extent marks the transition between low-TDS (total dissolved solids) groundwater suitable for water supply at higher elevations and high-TDS brackish groundwater in areas overlain by lacustrine deposits closer to the current lake level. Low-TDS groundwater is limited to mid-to-low reach influent leakage of rivers incising terraces. Permeable fluvial deposits within the deeper paleo-river channel may possibly provide low-TDS water. The conceptual model, whereby paleo-lake controls groundwater salinity, provides science-based evidence to address policy to manage the significant water point functionality concerns quantified at the district and river basin scales. Targeting of the low-TDS groundwater alongside improved use of upland low-TDS stream/river sources with fewer, but larger capacity, and better maintained gravity-fed supply schemes are recommended. This study hence shows the value of paleo-geohydrology interpretation of the lake–groundwater system conceptualisation to inform Sustainable Development Goal 6 (SDG 6.5.1)—integrated water resources management policy for rural water supply
    • …
    corecore