10 research outputs found

    Design and realization of monitoring system for measuring air temperature and humidity, wind direction and speed

    Get PDF
    An air humidity sensor based on the capacity principle and programmable digital air temperature sensors are designed in the work. The wind direction and wind speed sensor (anemometer) is based on the optoelectronic principle. Sensors register frequency impulses from the wind fan of the anemometer. Methods and materials conformable with modern electronics and informatics were used. The method of linear regression was used for calibration of sensors. The accuracy of an air temperature sensor was found better than 0,1 °C in the range from ‐55 to 125 °C, and an air humidity sensor was better than 1 % in the range from 0 to 98 %. The anemometer works in the range of wind velocity from 0 to 150 km.h−1 with accuracy better than 1 % to 90 km.h−1 and over 90 km/h better than 3 %. First of all these sensors were proposed for automatic weather stations widely used in the sector of agriculture (microclimatic weather stations), industry and for other technological operations where monitoring of temperature, wind speed, wind direction and humidity is required. The sensors will be used as models for educational purposes at the lessons of biometeorology and climatology too. Oro temperatūros ir drėgnio bei vėjo krypties ir greičio matavimo stebėsenos sistemos kūrimas Santrauka Straipsnyje aprašomi sukurtieji oro drėgnio, oro temperatūros bei vėjo krypties ir vėjo greičio (anemometras) jutikliai, pagrįsti optiniu-elektroniniu principu. Jutikliai registruoja anemometro menčių sukeliamus dažnio impulsus. Kuriant įrenginį taikyti nūdienos elektronikos ir informatikos metodai ir medžiagos. Jutikliai kalibruoti remiantis tiesinės regresijos metodu. Nustatytas oro temperatūros jutiklio, matuojant nuo –55 iki 125 ºC, tikslumas buvo didesnis nei 0,1 ºC, o oro drėgnio jutiklio, matuojant nuo 0 iki 98 % , – didesnis nei 1 %. Matavimo anemometru ribos yra nuo 0 iki 150 km/h, tikslumas – didesnis nei 1 %, kai vėjas siekia iki 90 km/h greičio, bei didesnis nei 3 %, kai vėjo greitis viršija 90 km/h. Jutiklius rekomenduota naudoti automatinėse mikroklimatinių sąlygų matavimo stotyse, plačiai taikomose žemės ūkyje, pramonėje bei kitiems tikslams, kai būtini temperatūros, vėjo greičio, vėjo krypties bei drėgnio matavimai. Jutikliai bus naudojami ir švietimo tikslams, dėstant biometeorologiją bei klimatologiją. Reikšminiai žodžiai: oro drėgnio jutiklis, oro temperatūros jutiklis, mikroklimatinių sąlygų nustatymo stotys, vėjo krypties jutiklis, optinis-elektroninis principas. Проектирование и реализация системы мониторинга для измерения температуры воздуха, атмосферной влажности, направления и скорости ветра Резюме Описаны сенсоры атмосферной влажности, температуры воздуха, а также скорости и направления ветра (анемометр), который работает по опто-электронному принципу. Сенсоры фиксируют частные импульсы, создаваемые лопатками анемометра. Для создания аппарата были применены новейшие методы и материалы современной электроники и информатики. Для калибрации сенсоров был использован метод линейной регрессии. Установленная точность сенсора температуры воздуха была больше, чем 0,1 ºC, в пределах от 55 до 125 ºC, а точность сенсора атмосферной влажности была больше, чем 1 %, в пределах от 0 до 98 %. Пределы измерения анемометра составили от 0 до 150 км/ч, точность – больше, чем 1 %, когда скорость не превышала 90 км/ч, и больше, чем 3 %, когда скорость превышала 90 км/ч. Созданные сенсоры рекомендуется использовать в качестве оборудования станций для измерения микроклиматических условий. Такие станции широко используются в сельском хозяйстве, промышленности и для других целей, требующих измерения температуры или влажности воздуха, скорости и направления ветра. Сенсоры будут также использоваться при изучении студентами курсов по биометеорологии и климатологии. Ключевые слова: сенсор атмосферной влажности, сенсор температуры воздуха, станции для измерения микроклиматических условий, сенсор направления ветра, опто-электронный принцип. Firstd Published Online: 14 Oct 201

    Change in the Length of the Vegetation Period of Tomato (Solanum lycopersicum L.), White Cabbage (Brassica oleracea L. var. capitata) and Carrot (Daucus carota L.) Due to Climate Change in Slovakia

    No full text
    Climate change is affecting all sectors of human activities worldwide, including crop production. The aim of the paper was to evaluate the average daily air temperatures measured at one hundred meteorological stations across Slovakia in 1961–2010 and calculate the maximum length of the vegetation period for Solanum lycopersicum L., Brassica oleracea L. var. capitata and Daucus carota L. Future trends predictions of the temporal and spatial development across the duration of the vegetation period in Slovakia were elaborated for decades 2011–2020, 2041–2050, 2071–2080 and 2091–2100. Our results show that there was an earlier start to the vegetation period in spring and a later termination in autumn for past 30 years. There is a predicted trend of prolongation of the maximum duration of the vegetation period up to 20 days (Solanum lycopersicum L., Brassica oleracea L. var. capitata) and 15 days (Daucus carota L.) in comparison with the refence decade 2001–2010. The maximum vegetation period duration will extend from the south of Slovakia towards the north of the country. The predicted potential increase in crop vegetation periods will be limited by other constraints such as the availability of arable land and soil water availability

    Statistic and probability characteristics of rain factor R in Slovak Republic

    No full text
    Because soil erosion which is caused by rain is also an important phenomenon in the Slovak Republic, higher emphasis is impute to research of water erosion caused by rain and that is why we proceeded to calculate the rain factor R. Based on data which were provided by the Slovak Hydrometeorological Insitute for 6 selected meteorological stations in Slovakia, we accomplished to the calculation of rain factor R. For the calculation we used the methodology by Wischmeier-Smith (1978) and results we comparing with the methodology of Hudson (KE> 1) and with already published values of the Research Institute of Soil Science and Conservation. We also created a line exceeded of probability from the calculated data, which gives us detailed information on the occurrence of the calculated R values 1 time per 100, 20, 10, 5, 2 and 1 year. On the basis of calculated data we created a distribution of R factor values for individual months of the growing season and found out that the highest percentage fall on the summer months June, July, August and by contrast the lowest to April and October, so it is necessary to impute emphasis to soil erosion control especially in summer months. Comparing the methodology of Hudson (KE>1) and methodology of Wischemeier-Smith, we found out that the Hudson methodology gives almost 2 times lower value of R-factor than with using the methodology of Wischmeier-Smith

    Influence of Roof Installation of PV Modules on the Microclimate Conditions of Cattle Breeding Objects

    No full text
    This paper is focused on the temperature measurements which can detected the influence of temperature changes on the microclimate in animal production building after the installation of photovoltaic (PV) modules. The first series of experiments were performed on a specially designed model cowshed. For the data comparison and verification, the same measurements were realized in real conditions of the animal production object. The temperature balance was identified by measurements of the temperatures in the different parts of roof, PV modules, and the most important were measurements of the ambient temperature and temperatures in three levels of the cowshed interior. For the confirmation of results, measurements were done in two cowsheds, which had the same azimuth orientation and roof slope. The first cowshed was without installation of the PV modules on the roof and the second building had installed PV modules. By the data analyzed from experimentally obtained time-temperature dependencies, it was found that the installation of PV modules on the cowshed roof had a positive influence on the interior temperature balance. The installation of PV also had a positive effect on the cowshed microclimate, which was declared by calculation of the Temperature—Humidity—Index

    The Effect of Fertilization on Time Domain Reflectometry Probe Measurement Accuracy in the Field Experiment in Slovakia

    No full text
    The paper presents evaluation of the calibration method using side-by-side direct gravimetric and indirect time domain reflectometry (TDR) for soil moisture measurements to improve TDR measurement accuracy. Measurements were carried out at the experimental site Dolná Malanta (Slovakia) in 2017. Two non-fertilized treatments – without biochar (B0 + N0) and with biochar at 20 t·ha−1 (B20 + N0) – and two fertilized treatments – with biochar at 20 t·ha−1 and N fertilizer at dosages of 160 kg·ha−1 (B20 + N160) and 240 kg·ha−1 (B20 + N240) – were used in this study. The study also investigates the relationship between both used methods of soil water content determination. A strong correlation between both methods was observed. In case of (B0 + N0); (B20 + N0); (B20 + N160); and (B20 + N240), it was 0.93; 0.97; 0.97; and 0.98, respectively. However, it is assumed that the TDR probe may show errors in the results without prior calibration. It was observed that the accuracy of TDR device was lower for fertilized treatments in contrast to the gravimetric method and non-fertilized treatments. It is assumed that the higher measurement inaccuracy might be increased by salt concentration in the soil as a result of applied N fertilizer

    Changes in Vegetation Period Length in Slovakia under the Conditions of Climate Change for 1931–2110

    No full text
    The global mean near-surface temperature between 2012 and 2021 was 1.11 to 1.14 °C warmer than the pre-industrial level. This makes it the warmest period on record. The aim of this article was to investigate vegetation period changes (onset and termination of the temperature T ≥ 5 °C, T ≥ 10 °C, and T ≥ 15 °C) due to climate change from the average air temperature for the periods 1931–1961, 1961–1991, and 1991–2020 for 24 stations in Slovakia and forecast the length of vegetation periods for the periods 2021–2050, 2051–2080, and 2081–2110. The number of days with these characteristic temperatures was used as an input dataset, from which map outputs were generated in ArcGIS software. Spatial analysis of the vegetation periods in the past, present, and future showed an earlier start of the vegetation period in spring and a later ending in autumn during the last 30 years. The maximum duration of the vegetation period will expand from the south to the north of Slovakia. Future scenarios showed an extension of the vegetation period duration. On the other hand, this potential advantage for crop cultivation is limited by a lack of arable land in the north of Slovakia and by a lack of precipitation in the south of Slovakia

    Changes in the Agroclimatic Areas of Slovakia in 1961–2020

    No full text
    The World Meteorological Organisation predicts an increase in average annual temperature. As a result of climate change in Slovakia, one can expect changes in the distribution of precipitation and moisture availability, changes in the temperature availability of crop production, changes in wintering conditions, and many others. The aim of this work was the analysis of agroclimatic indicators for the period 1961-1990 and 1991-2020. The results showed an increase in the sums of temperatures in the growing season. Also, the increase in temperature resulted in a change in the zones of the agroclimatic indicator of moisture and the agroclimatic indicator of wintering. The zones have been shifting to higher altitudes throughout Slovakia

    Changes in the Agroclimatic Areas of Slovakia in 1961–2020

    No full text
    The World Meteorological Organisation predicts an increase in average annual temperature. As a result of climate change in Slovakia, one can expect changes in the distribution of precipitation and moisture availability, changes in the temperature availability of crop production, changes in wintering conditions, and many others. The aim of this work was the analysis of agroclimatic indicators for the period 1961–1990 and 1991–2020. The results showed an increase in the sums of temperatures in the growing season. Also, the increase in temperature resulted in a change in the zones of the agroclimatic indicator of moisture and the agroclimatic indicator of wintering. The zones have been shifting to higher altitudes throughout Slovakia

    Impact of climate change on vegetation period of basic species of vegetables in Slovakia

    No full text
    The aim of the paper is to provide climatic data from the basic elements and characteristics of the energy balance in terms of the current state and in terms of trends and assumptions of their future changes in Slovakia. Climate change affect agriculture and its procedures. Changes in vegetation period in Slovakia of selected vegetables are presented in this study. We used for agro-climatic analysis one hundred climatological stations, which were selected to cover all agricultural regions up to 800 m a.s.l. Actual data and predictions were compared with time period 1961–2010. Due to homogeneity in data measurements, was chosen this period. We obtained climate trends and assumed map outputs of future climate changes by mathematical-statistical methods for horizons of years 2011–2020, 2041–2050, 2071–2080 and 2091–2100. We analysed vegetation period changes of selected fruit vegetables, Brassica vegetables and root vegetable in field conditions with prediction to year 2100. In our results is shown the earlier beginning of vegetation period in a spring and later end in an autumn in last 30 years. The vegetation period is getting longer about 15–20 days for Capsicum annuum; 15–20 days for Brassica oleracea var. capitate; 10–15 days for Beta vulgaris subsp. vulgaris with comparation of nowadays situation and period 2091–2100

    Climate Change Impact on the Duration of Great Vegetation Period and Vegetation Period of Beetroot and Watermelon in Slovakia

    No full text
    Climate change brings to the whole world numerous challenges such as an increase in the global temperature, weather fluctuations, periods of drought and heat alternating the local floods. While the majority of the effects are negative for agricultural production, some can be beneficial. Our work presents the evaluation of the changes in the duration of the great vegetation period (delineated with the beginning and end of days with an average temperature T ≥ 5.0 °C) and the vegetation periods of watermelon (Citrullus lanatus Thumb.) and beetroot (Beta vulgaris L.). Data sets on the average monthly air temperatures for the period 1961–2020 from one hundred agroclimatic stations in Slovakia were selected for the estimation of the future average air temperatures using statistical methods (linear trendline). Based on the temperature requirements of the selected crops, the potential maximum duration of the vegetation period was estimated for several decades from 2041 up to 2100. The results clearly showed prolongation of the vegetation periods and changes of their zonation in Slovakia. In 2011–2020, the duration of the beetroot vegetation period in the southernmost part of Slovakia (Danubian Lowland) was 15–20 days longer than in decade 1971–1980. It is expected, that this value will rise by another 10–15 days in decade 2091–2100. Since 1971–1980, watermelon vegetation period duration increased by 5–10 days when compared to decade 2011–2020. It is expected that by 2091–2100, its duration will prolong by another 30–35 days
    corecore