16 research outputs found

    Transformations of symmetric multipartite Gaussian states by Gaussian LOCC

    Full text link
    Multipartite quantum correlations, in spite of years of intensive research, still leave many questions unanswered. While bipartite entanglement is relatively well understood for Gaussian states, the complexity of mere qualitative characterization grows rapidly with increasing number of parties. Here, we present two schemes for transformations of multipartite permutation invariant Gaussian states by Gaussian local operations and classical communication. To this end, we use a scheme for possible experimental realization, making use of the fact, that in this picture, the whole N - partite state can be described using two separable modes. Numerically, we study entanglement transformations of tripartite states. Finally, we look at the effect our protocols have on fidelity of assisted quantum teleportation and find that while adding correlated noise does not affect the fidelity at all, there is strong evidence that partial non-demolition measurement leads to a drop in teleportation fidelity.Comment: 9 page

    Measurement-Induced Long-Distance Entanglement of Superconducting Qubits using Optomechanical Transducers

    Get PDF
    Although superconducting systems provide a promising platform for quantum computing, their networking poses a challenge as they cannot be interfaced to light---the medium used to send quantum signals through channels at room temperature. We show that mechanical oscillators can mediated such coupling and light can be used to measure the joint state of two distant qubits. The measurement provides information on the total spin of the two qubits such that entangled qubit states can be postselected. Entanglement generation is possible without ground-state cooling of the mechanical oscillators for systems with optomechanical cooperativity moderately larger than unity; in addition, our setup tolerates a substantial transmission loss. The approach is scalable to generation of multipartite entanglement and represents a crucial step towards quantum networks with superconducting circuits.Comment: Updated figures, close to published versio

    Novel approaches to optomechanical transduction

    Get PDF
    [no abstract

    Spatially Adiabatic Frequency Conversion in Optoelectromechanical Arrays

    Full text link
    Faithful conversion of quantum signals between microwave and optical frequency domains is crucial for building quantum networks based on superconducting circuits. Optoelectromechanical systems, in which microwave and optical cavity modes are coupled to a common mechanical oscillator, are a promising route towards this goal. In these systems, efficient, low-noise conversion is possible using a mechanically dark mode of the fields but the conversion bandwidth is limited to a fraction of the cavity linewidth. Here, we show that an array of optoelectromechanical transducers can overcome this limitation and reach a bandwidth that is larger than the cavity linewidth. The coupling rates are varied in space throughout the array so that the mechanically dark mode of the propagating fields adiabatically changes from microwave to optical or vice versa. This strategy also leads to significantly reduced thermal noise with the collective optomechanical cooperativity being the relevant figure of merit. Finally, we demonstrate that, quite surprisingly, the bandwidth enhancement per transducer element is largest for small arrays; this feature makes our scheme particularly attractive for state-of-the-art experimental setups.Comment: 18 pages, 10 figures (including Supplemental Material

    Interference effects in hybrid cavity optomechanics

    Full text link
    Radiation pressure forces in cavity optomechanics allow for efficient cooling of vibrational modes of macroscopic mechanical resonators, the manipulation of their quantum states, as well as generation of optomechanical entanglement. The standard mechanism relies on the cavity photons directly modifying the state of the mechanical resonator. Hybrid cavity optomechanics provides an alternative approach by coupling mechanical objects to quantum emitters, either directly or indirectly via the common interaction with a cavity field mode. While many approaches exist, they typically share a simple effective description in terms of a single force acting on the mechanical resonator. More generally, one can study the interplay between various forces acting on the mechanical resonator in such hybrid mechanical devices. This interplay can lead to interference effects that may, for instance, improve cooling of the mechanical motion or lead to generation of entanglement between various parts of the hybrid device. Here, we provide such an example of a hybrid optomechanical system where an ensemble of quantum emitters is embedded into the mechanical resonator formed by a vibrating membrane. The interference between the radiation pressure force and the mechanically modulated Tavis--Cummings interaction leads to enhanced cooling dynamics in regimes in which neither force is efficient by itself. Our results pave the way towards engineering novel optomechanical interactions in hybrid optomechanical systems.Comment: 19 pages, 5 figure

    Cavity Quantum Electrodynamics with Frequency-Dependent Reflectors

    Full text link
    We present a general framework for cavity quantum electrodynamics with strongly frequency-dependent mirrors. The method is applicable to a variety of reflectors exhibiting sharp internal resonances as can be realized, for example, with photonic-crystal mirrors or with two-dimensional atomic arrays around subradiant points. Our approach is based on a modification of the standard input--output formalism to explicitly include the dynamics of the mirror's internal resonance. We show how to directly extract the interaction tuning parameters from the comparison with classical transfer matrix theory and how to treat the non-Markovian dynamics of the cavity field mode introduced by the mirror's internal resonance. As an application within optomechanics, we illustrate how a non-Markovian Fano cavity possessing a flexible photonic crystal mirror can provide both sideband resolution as well as strong heating suppression in optomechanical cooling. This approach, amenable to a wide range of systems, opens up possibilities for using hybrid frequency-dependent reflectors in cavity quantum electrodynamics for engineering novel forms of light-matter interactions
    corecore