18 research outputs found

    Generation of Silver Nanoparticles by the Pin-Hole DC Plasma Source with and without Gas Bubbling

    Get PDF
    Silver nanoparticles were produced using the pin-hole discharge generated by dc non-pulsing high voltage directly in silver nitrate solutions. Sodium nitrate was alternatively added to increase solution conductivity and decrease input energy for the discharge breakdown. Argon or oxygen was bubbled through the discharge region. Comparative experiments were evaluated by UV-VIS spectrometry. Formation of silver nanoparticles with the average size of 100 nm was confirmed by SEM/EDS analysis

    Three-body segment musculoskeletal model of the upper limb

    No full text
    The main aim is to create a computational three-body segment model of an upper limb of a human body for determination of muscle forces generated to keep a given loaded upper limb position. The model consists of three segments representing arm, forearm, hand and of all major muscles connected to the segments. Muscle origins and insertions determination corresponds to a real anatomy. Muscle behaviour is defined according to the Hill-type muscle model consisting of contractile and viscoelastic element. The upper limb is presented by a system of three rigid bars connected by rotational joints. The whole limb is fixed to the frame in the shoulder joint. A static balance problem is solved by principle of virtual work. The system of equation describing the musculoskeletal system is overdetermined because more muscles than necessary contribute to get the concrete upper limb position. Hence the mathematical problem is solved by an optimization method searching the least energetically-consuming solution. The upper limb computational model is verified by electromyography of the biceps brachii muscle

    Resonance-assisted stabilisation of hydrogen bonds probed by NMR spectroscopy and path integral molecular dynamics

    Get PDF
    Path integral molecular dynamics and experimental NMR data are used to investigate resonance-assisted hydrogen bonds (RAHBs). When nuclear delocalisation is included in chemical shift calculations, the agreement with experiment is excellent, while static calculations show very poor performance. The results support the concept of RAHB, which has recently been questioned

    Evaluation of human thorax FE model in various impact scenarios

    No full text
    The study focused on the validation of the 50th percentile male model — a detailed FE model of the thoracic segment of the human body developed within project Development of a Finite Element Model of the Human Thorax and Upper Extremities (THOMO) co-funded by the European Commission (7th Framework Programme). The model response was tested in three impact scenarios: frontal, lateral and oblique. The resulting impactor contact force vs. time and chest deflection vs. time responses were compared with experimental results. The strain profile of the 5th rib was checked with lateral and oblique strain profiles from post-mortem human subject (PMHS) experiments. The influence of heart and lungs on the mechanical response of the model was assessed and the material data configuration, giving the most biofidelic thorax behaviour, was identified
    corecore