3 research outputs found

    Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    No full text
    In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM). In the design stage, Laguerre-Voronoi tessellations (LVT) were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V), from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation

    Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell

    No full text
    In the present paper, we demonstrate how modifications of the microstructure and the chemical composition can influence the electrochemical behavior of cathodes for molten carbonate fuel cells (MCFCs). Based on our experience, we designed new MCFC cathode microstructures combining layers made of porous silver, nickel oxide or nickel foam to overcome common issues with the internal resistance of the cell. The microstructures of the standard NiO cathode and manufactured cathodes were extensively investigated using scanning electron microscopy (SEM) and porosity measurements. The electrochemical behavior and overall cell performance were examined by means of electrochemical impedance spectroscopy and single-cell tests in operation conditions. The results show that a porous silver layer tape cast onto standard NiO cathode and nickel foam used as a support layer for tape cast NiO porous layer substantially decrease resistance components representing charge transfer and mass transport phenomena, respectively. Therefore, it is beneficial to combine them into a three-layer cathode since it facilitates separation of predominant physio-chemical processes of gas and ions transport in respective layers ensuring high efficiency. The superiority of the three-layer cathode has been proven by low impedance and high power density as compared to standard NiO cathode

    Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell

    Get PDF
    In the present paper, we demonstrate how modifications of the microstructure and the chemical composition can influence the electrochemical behavior of cathodes for molten carbonate fuel cells (MCFCs). Based on our experience, we designed new MCFC cathode microstructures combining layers made of porous silver, nickel oxide or nickel foam to overcome common issues with the internal resistance of the cell. The microstructures of the standard NiO cathode and manufactured cathodes were extensively investigated using scanning electron microscopy (SEM) and porosity measurements. The electrochemical behavior and overall cell performance were examined by means of electrochemical impedance spectroscopy and single-cell tests in operation conditions. The results show that a porous silver layer tape cast onto standard NiO cathode and nickel foam used as a support layer for tape cast NiO porous layer substantially decrease resistance components representing charge transfer and mass transport phenomena, respectively. Therefore, it is beneficial to combine them into a three-layer cathode since it facilitates separation of predominant physio-chemical processes of gas and ions transport in respective layers ensuring high efficiency. The superiority of the three-layer cathode has been proven by low impedance and high power density as compared to standard NiO cathode.publishedVersio
    corecore