39 research outputs found

    Outlining where humans live -- The World Settlement Footprint 2015

    Full text link
    Human settlements are the cause and consequence of most environmental and societal changes on Earth; however, their location and extent is still under debate. We provide here a new 10m resolution (0.32 arc sec) global map of human settlements on Earth for the year 2015, namely the World Settlement Footprint 2015 (WSF2015). The raster dataset has been generated by means of an advanced classification system which, for the first time, jointly exploits open-and-free optical and radar satellite imagery. The WSF2015 has been validated against 900,000 samples labelled by crowdsourcing photointerpretation of very high resolution Google Earth imagery and outperforms all other similar existing layers; in particular, it considerably improves the detection of very small settlements in rural regions and better outlines scattered suburban areas. The dataset can be used at any scale of observation in support to all applications requiring detailed and accurate information on human presence (e.g., socioeconomic development, population distribution, risks assessment, etc.)

    Where we live – A summary of the achievements and planned evolution of the Global Urban Footprint

    Get PDF
    The TerraSAR-X (TSX) mission provides a distinguished collection of high resolution satellite images that shows great promise for a global monitoring of human settlements. Hence, the German Aerospace Center (DLR) has developed the Urban Footprint Processor (UFP) that represents an operational framework for the mapping of built-up areas based on a mass processing and analysis of TSX imagery. The UFP includes functionalities for data management, feature extraction, unsupervised classification, mosaicking, and post-editing. Based on >180.000 TSX StripMap scenes, the UFP was used in 2016 to derive a global map of human presence on Earth in a so far unique spatial resolution of 12 m per grid cell: the Global Urban Footprint (GUF). This work provides a comprehensive summary of the major achievements related to the Global Urban Footprint initiative, with dedicated sections focusing on aspects such as UFP methodology, basic product characteristics (specification, accuracy, global figures on urbanization derived from GUF), the user community, and the already initiated future roadmap of follow-on activities and products. The active community of >250 institutions already working with the GUF data documents the relevance and suitability of the GUF initiative and the underlying high-resolution SAR imagery with respect to the provision of key information on the human presence on earth and the global human settlements properties and patterns, respectively

    Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins

    No full text
    The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions.Die Untersuchung von Erdsystemkomponenten und deren Wechselwirkungen ist von großer Relevanz, um das Prozessverständnis sowie die Auswirkungen des globalen Klimawandels auf die Landoberfläche zu verbessern. In diesem Zusammenhang liefert die Erdbeobachtung (EO) wertvolle Langzeitaufnahmen zu einer Vielzahl an Landoberflächenvariablen. Diese können als Indikator für die Erdsystemkomponenten genutzt werden und sind essenziell für großflächige Analysen. Flusseinzugsgebiete sind besonders geeignet um Landoberflächendynamiken mit multivariaten Zeitreihen zu analysieren, da diese verschiedene Sphären des Erdsystems umfassen. Zur Charakterisierung der Landoberfläche stehen zahlreiche EO-Missionen mit unterschiedlichen Eigenschaften zur Verfügung. Nur einige wenige Missionen gewährleisten jedoch die Erstellung von räumlich und zeitlich konsistenten Zeitreihen mit äquidistanten Beobachtungen über großräumige Untersuchungsgebiete, wie z.B. die MODIS Sensoren. Um bisherige EO-Analysen zu Landoberflächendynamiken in großen Flusseinzugsgebieten zu untersuchen, wurde eine Literaturrecherche durchgeführt, wobei mehrere Forschungslücken identifiziert wurden. Studien untersuchten nur selten ein ganzes Einzugsgebiet, sondern konzentrierten sich lediglich auf Teilgebietsgebiete oder regionale Untersuchungsgebiete. Darüber hinaus wurden transnationale Einzugsgebiete nur unzureichend analysiert, wobei sich die Studien größtenteils auf ausgewählte Anrainerstaaten beschränkten. Auch wurde die Analyse von Umweltveränderungen meistens anhand einer einzigen EO-Landoberflächenvariable durchgeführt, während eine synergetische Untersuchung von sphärenübergreifenden Landoberflächenvariablen kaum unternommen wurde. Um diese Forschungslücken zu adressieren, ist ein methodischer Ansatz notwendig, der (1) die Vorverarbeitung und Harmonisierung von Zeitreihen aus mehreren Quellen und (2) die statistische Analyse eines multivariaten Merkmalsraums ermöglicht. Für die Entwicklung und Anwendung eines methodischen Frameworks, das raum-zeitlich übertragbar ist, wurden die transnationalen Einzugsgebiete Indus, Ganges, Brahmaputra und Meghna (IGBM) in Südasien, deren Größe etwa der achtfachen Fläche von Deutschland entspricht, ausgewählt. Diese Einzugsgebiete hängen weitgehend von den Wasserressourcen des Monsunregens und des Hochgebirges Asiens ab. Insgesamt leben über 1,1 Milliarden Menschen in dieser Region und sind zum Teil in hohem Maße von diesen Wasserressourcen abhängig, die auch für die größten zusammenhängenden bewässerten Anbauflächen der Welt und auch für weitere inländische Bedarfe unerlässlich sind. Aufgrund ihrer sehr heterogenen geographischen Gegebenheiten ermöglichen diese Einzugsgebiete eine detaillierte sphärenübergreifende Analyse der Wechselwirkungen, einschließlich der Anthroposphäre, Biosphäre, Kryosphäre, Hydrosphäre, Lithosphäre und Atmosphäre. In dieser Dissertation wurden Landoberflächendynamiken der letzten zwei Jahrzehnte anhand von EO-Zeitreihen zum Vegetationszustand, zu Oberflächengewässern und zur Schneebedeckung analysiert. Diese basieren auf MODIS-Aufnahmen, dem DLR Global WaterPack und dem JRC Global Surface Water Layer sowie dem DLR Global SnowPack. Diese Zeitreihen wurden in Kombination mit weiteren klimatischen, hydrologischen und anthropogenen Variablen ausgewertet. Die Harmonisierung des multivariaten Merkmalsraumes ermöglichte die Analyse von Landoberflächendynamiken unter Nutzung von statistischen Methoden. Diese Methoden umfassen (1) die Berechnung von Trends mittels des Mann-Kendall und des Theil-Sen Tests, (2) die Berechnung von phänologischen Metriken anhand des Timesat-Tools, (3) die Bewertung von treibenden Variablen unter Nutzung des PCMCI Algorithmus und (4) zusätzliche Korrelationstests zur Analyse des menschlichen Einflusses auf den Vegetationszustand und die Wasseroberfläche. Diese Analysen wurden auf jährlichen und saisonalen Zeitskalen und für verschiedene räumliche Einheiten durchgeführt. Für den Vegetationszustand wurden weitgehend signifikant positive Trends ermittelt. Analysen haben gezeigt, dass landwirtschaftliche Nutzflächen am meisten zu diesen Trends beitragen haben. Besonders hoch waren die Trends in ariden Regionen. Bei Oberflächengewässern wurden auf jährlicher Ebene signifikant positive Trends festgestellt. Auf Pixelebene wurden jedoch sowohl regional als auch saisonal Cluster mit signifikant negativen Trends identifiziert. Die Trends für die Schneebedeckung blieben auf jährlicher Ebene weitgehend stabil, jedoch wurden in Teilen der Einzugsgebiete zu bestimmten Jahreszeiten signifikant negative Trends beobachtet. Die negativen Trends wurden auch für höhenabhängige Zonen festgestellt, insbesondere in hohen Lagen. Außerdem wurden in Teilen der Einzugsgebiete Rückgänge bei der saisonalen Dauer der Schneebedeckung ermittelt. Darüber hinaus ergab die Untersuchung des multivariaten Merkmalsraums auf kausale Zusammenhänge auf saisonaler Ebene erstmals Aufschluss über direkte und indirekte Relationen zwischen EO-Landoberflächenvariablen und den entsprechenden Einflussfaktoren. Zusammengefasst wurde die Vegetation durch die Wasserverfügbarkeit, die Oberflächengewässer durch den Abfluss und indirekt durch den Niederschlag sowie die Schneebedeckung durch Niederschlag und Temperatur mit räumlichen und saisonalen Unterschieden kontrolliert. Zusätzliche Analysen wiesen auf einen positiven Zusammenhang zwischen dem menschlichen Einfluss und den zunehmenden Trends in der Vegetationsfläche hin. Diese sphärenübergreifenden Untersuchungen zu Trends und Wechselwirkungen liefern neue und wertvolle Einblicke in den vergangenen Zustand von Landoberflächendynamiken sowie in die relevanten klimatischen und hydrologischen Einflussfaktoren. Neben den untersuchten Einzugsgebieten in Südasien sind diese Erkenntnisse auch für weitere Einzugsgebiete und geographische Regionen von großer Bedeutung

    Monitoring urban growth by means of multi-temporal time-series of optical Landsat data

    Get PDF
    Rapid urban expansion in cities across the globe is forcing the development of appropriate methods to monitor the status as well as the historical evolution of urban areas to support applications like urban planning and management. Here, remote sensing data have proven to be an effective tool to delineate urban areas, since they provide satellite imagery for large areas at a relatively high temporal frequency with the additional advantage of free access to data archives comprising data back to 1972. This study proposes a novel fully automated classification system based on Support Vector Machines (SVM) to derive urban extent maps. For this purpose, multi-temporal Landsat time-series namely temporal statistics consisting of selected spectral and temporal indices, have been employed for the 8 sites included in the urban supersites initiative of the Group on Earth Observation (GEO) and the investigation periods 2002–2003 and 2013–2015. The proposed methodology includes (1.) the pre-processing of Landsat scenes and calculation of the temporal statistics, (2.) the enhancement of the Global Urban Footprint (GUF), which is applied for an automated and random collection of training samples, (3.) the collection of training points for a set of configurations to overcome impacts of randomness, (4.) the application of a majority voting strategy to obtain a final urban extent map, and (5.) the implementation of an extensive accuracy assessment. The derived results report the automated SVM based classification system to be quite promising and in addition it proved to be very robust since it resulted in high accuracies throughout all study areas. In general, the obtained overall accuracy and Kappa coefficient is always higher than 91.38 % and 0.827, respectively

    Multivariate Zeitreihen zur Analyse von Landoberflächendynamiken - Auswertung von Trends und Treibern von Landoberflächenvariablen für Flusseinzugsgebiete der Indus-Ganges Ebene

    No full text
    The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions.Die Untersuchung von Erdsystemkomponenten und deren Wechselwirkungen ist von großer Relevanz, um das Prozessverständnis sowie die Auswirkungen des globalen Klimawandels auf die Landoberfläche zu verbessern. In diesem Zusammenhang liefert die Erdbeobachtung (EO) wertvolle Langzeitaufnahmen zu einer Vielzahl an Landoberflächenvariablen. Diese können als Indikator für die Erdsystemkomponenten genutzt werden und sind essenziell für großflächige Analysen. Flusseinzugsgebiete sind besonders geeignet um Landoberflächendynamiken mit multivariaten Zeitreihen zu analysieren, da diese verschiedene Sphären des Erdsystems umfassen. Zur Charakterisierung der Landoberfläche stehen zahlreiche EO-Missionen mit unterschiedlichen Eigenschaften zur Verfügung. Nur einige wenige Missionen gewährleisten jedoch die Erstellung von räumlich und zeitlich konsistenten Zeitreihen mit äquidistanten Beobachtungen über großräumige Untersuchungsgebiete, wie z.B. die MODIS Sensoren. Um bisherige EO-Analysen zu Landoberflächendynamiken in großen Flusseinzugsgebieten zu untersuchen, wurde eine Literaturrecherche durchgeführt, wobei mehrere Forschungslücken identifiziert wurden. Studien untersuchten nur selten ein ganzes Einzugsgebiet, sondern konzentrierten sich lediglich auf Teilgebietsgebiete oder regionale Untersuchungsgebiete. Darüber hinaus wurden transnationale Einzugsgebiete nur unzureichend analysiert, wobei sich die Studien größtenteils auf ausgewählte Anrainerstaaten beschränkten. Auch wurde die Analyse von Umweltveränderungen meistens anhand einer einzigen EO-Landoberflächenvariable durchgeführt, während eine synergetische Untersuchung von sphärenübergreifenden Landoberflächenvariablen kaum unternommen wurde. Um diese Forschungslücken zu adressieren, ist ein methodischer Ansatz notwendig, der (1) die Vorverarbeitung und Harmonisierung von Zeitreihen aus mehreren Quellen und (2) die statistische Analyse eines multivariaten Merkmalsraums ermöglicht. Für die Entwicklung und Anwendung eines methodischen Frameworks, das raum-zeitlich übertragbar ist, wurden die transnationalen Einzugsgebiete Indus, Ganges, Brahmaputra und Meghna (IGBM) in Südasien, deren Größe etwa der achtfachen Fläche von Deutschland entspricht, ausgewählt. Diese Einzugsgebiete hängen weitgehend von den Wasserressourcen des Monsunregens und des Hochgebirges Asiens ab. Insgesamt leben über 1,1 Milliarden Menschen in dieser Region und sind zum Teil in hohem Maße von diesen Wasserressourcen abhängig, die auch für die größten zusammenhängenden bewässerten Anbauflächen der Welt und auch für weitere inländische Bedarfe unerlässlich sind. Aufgrund ihrer sehr heterogenen geographischen Gegebenheiten ermöglichen diese Einzugsgebiete eine detaillierte sphärenübergreifende Analyse der Wechselwirkungen, einschließlich der Anthroposphäre, Biosphäre, Kryosphäre, Hydrosphäre, Lithosphäre und Atmosphäre. In dieser Dissertation wurden Landoberflächendynamiken der letzten zwei Jahrzehnte anhand von EO-Zeitreihen zum Vegetationszustand, zu Oberflächengewässern und zur Schneebedeckung analysiert. Diese basieren auf MODIS-Aufnahmen, dem DLR Global WaterPack und dem JRC Global Surface Water Layer sowie dem DLR Global SnowPack. Diese Zeitreihen wurden in Kombination mit weiteren klimatischen, hydrologischen und anthropogenen Variablen ausgewertet. Die Harmonisierung des multivariaten Merkmalsraumes ermöglichte die Analyse von Landoberflächendynamiken unter Nutzung von statistischen Methoden. Diese Methoden umfassen (1) die Berechnung von Trends mittels des Mann-Kendall und des Theil-Sen Tests, (2) die Berechnung von phänologischen Metriken anhand des Timesat-Tools, (3) die Bewertung von treibenden Variablen unter Nutzung des PCMCI Algorithmus und (4) zusätzliche Korrelationstests zur Analyse des menschlichen Einflusses auf den Vegetationszustand und die Wasseroberfläche. Diese Analysen wurden auf jährlichen und saisonalen Zeitskalen und für verschiedene räumliche Einheiten durchgeführt. Für den Vegetationszustand wurden weitgehend signifikant positive Trends ermittelt. Analysen haben gezeigt, dass landwirtschaftliche Nutzflächen am meisten zu diesen Trends beitragen haben. Besonders hoch waren die Trends in ariden Regionen. Bei Oberflächengewässern wurden auf jährlicher Ebene signifikant positive Trends festgestellt. Auf Pixelebene wurden jedoch sowohl regional als auch saisonal Cluster mit signifikant negativen Trends identifiziert. Die Trends für die Schneebedeckung blieben auf jährlicher Ebene weitgehend stabil, jedoch wurden in Teilen der Einzugsgebiete zu bestimmten Jahreszeiten signifikant negative Trends beobachtet. Die negativen Trends wurden auch für höhenabhängige Zonen festgestellt, insbesondere in hohen Lagen. Außerdem wurden in Teilen der Einzugsgebiete Rückgänge bei der saisonalen Dauer der Schneebedeckung ermittelt. Darüber hinaus ergab die Untersuchung des multivariaten Merkmalsraums auf kausale Zusammenhänge auf saisonaler Ebene erstmals Aufschluss über direkte und indirekte Relationen zwischen EO-Landoberflächenvariablen und den entsprechenden Einflussfaktoren. Zusammengefasst wurde die Vegetation durch die Wasserverfügbarkeit, die Oberflächengewässer durch den Abfluss und indirekt durch den Niederschlag sowie die Schneebedeckung durch Niederschlag und Temperatur mit räumlichen und saisonalen Unterschieden kontrolliert. Zusätzliche Analysen wiesen auf einen positiven Zusammenhang zwischen dem menschlichen Einfluss und den zunehmenden Trends in der Vegetationsfläche hin. Diese sphärenübergreifenden Untersuchungen zu Trends und Wechselwirkungen liefern neue und wertvolle Einblicke in den vergangenen Zustand von Landoberflächendynamiken sowie in die relevanten klimatischen und hydrologischen Einflussfaktoren. Neben den untersuchten Einzugsgebieten in Südasien sind diese Erkenntnisse auch für weitere Einzugsgebiete und geographische Regionen von großer Bedeutung

    Satellitengestützte Erfassung der Bodenversiegelung in Bayern 2015

    Get PDF
    In Bayern wurden im Jahr 2015 täglich 13,1 Hektar Freiflächen in Siedlungs- und Verkehrsflächen umgewandelt (Flächenverbrauch), wovon etwa die Hälfte versiegelt ist. In der neuen Studie wird mit Methoden der Fernerkundung u. a. der tatsächliche Versiegelungsgrad bis auf Gemeindeebene erhoben und auch die Veränderung gegenüber dem Jahr 2000 aufgezeigt. Durch die Versiegelung gehen die natürlichen Funktionen des Bodens verloren. Auswirkungen auf die Umwelt betreffen beispielsweise die biologische Vielfalt, die Grundwasserneubildung, die Hochwassergefahr, die Feinstaubentwicklung und das Lokalklima

    Multi-faceted analyses of seasonal trends and drivers of land surface variables in Indo-Gangetic river basins

    No full text
    The Indo-Gangetic river basins feature a wide range of climatic, topographic, and land cover characteristics providing a suitable setting for the exploration of multivariate time series. Here, we collocated a comprehensive feature space for these river basins including Earth observation time series on the normalized difference vegetation index (NDVI), surface water area (SWA), and snow cover area (SCA) in combination with driving variables between December 2002 and November 2020. First, we evaluated changes using multi-faceted trend analyses. Second, we employed the causal discovery algorithm Peter and Clark Momentary Conditional Independence (PCMCI) to disentangle interactions within the feature space. PCMCI quantifies direct and indirect relationships between variables and has been rarely applied to remote sensing applications. The results showed that vegetation greening continues significantly. Irrigated croplands in the Indus basin indicated the highest trend magnitude (0.042 NDVI/decade⁻¹). At annual and basin scale, positive trends were also identified for SWA in the Indus (837 km²/decade⁻¹) and Ganges basin (677 km²/decade⁻¹). Annual trends in SCA were insignificant at basin scale. Considering elevation zones, negative SCA trends were found in high altitudes of the Ganges and Brahmaputra river basins. Similarly, NDVI and SWA showed positive trends in high elevations. Furthermore, the causal analysis revealed that NDVI was controlled by water availability. SWA was directly influenced by river discharge and indirectly by precipitation. In high altitudes, SWA was controlled by SCA and temperature. Precipitation and temperature were identified as important drivers of SCA with spatio-temporal variations. With amplified climate change, the joint exploitation of time series will be of increasing importance to further enhance the understanding of land surface change and complex interplays across the spheres of the Earth system. The insights of this study and used methods could greatly support the development of climate change adaptation strategies for the investigated region

    Emerging pressure on mangrove forest environments as a result of shrimp farming expansion - A remote sensing based analyses for an exemplary coastal site at the Pacific coast in South America

    No full text
    Given the growing world population and rising demand for fish and seafood, aquaculture is becoming the main source of aquatic food in human consumption and a primary protein source for millions of people. Since 1990, the world aquaculture production increased from 13 to over 80 million tonnes and is currently valued at USD 231 billion. The cultivation of shrimp species in land-based ponds is one of the fastest growing food production economies and became an important industry in coastal regions, generates income and employment and contributes to food security. Shrimp farms are mainly found in low-lying coastal regions such as estuaries, bays and river deltas along the shorelines of Asia and America. Shrimp farming expanded rapidly in recent years and led to environmental degradation and conversion of valuable wetlands such as mangroves and other coastal forests. The loss of mangroves poses a major threat to coastal ecosystems and population, as mangroves provide valuable flood and coastal protection, as well as risk reduction benefits with regard to global climate change induced effects. In this research, we use image segmentation for temporal features derived from space-borne, high-resolution synthetic aperture radar (SAR) data to extract shrimp farming ponds in coastal mangrove forest areas in Ecuador, South America. An automatic object-based image processing approach aims for the detection of rectangular shaped pond objects utilizing per-pixel median images calculated from C-band Sentinel-1 and L-band ALOS-Palsar SAR time series data. An open source connected component segmentation algorithm was used to extract and locate rectangular shrimp farms in coastal areas based on backscatter intensity and shape features. This study illustrates the opportunities by earth observation for area-wide assessments of shrimp farming activities in mangrove areas to gain more knowledge on land use dynamics with regard to global change and food security. Earth observation can effectively support the planning and management of aquaculture practices and support stakeholders, politicians, and conservationists in implementing appropriate measures in order to protect coastal environments and foster sustainable development in the coastal zone
    corecore