224 research outputs found
AdS/CFT and large-N volume independence
We study the Eguchi-Kawai reduction in the strong-coupling domain of gauge
theories via the gravity dual of N=4 super-Yang-Mills on R^3xS^1. We show that
D-branes geometrize volume independence in the center-symmetric vacuum and give
supergravity predictions for the range of validity of reduced large-N models at
strong coupling.Comment: 4 pages, 2 figures; references and comments adde
Continuity, Deconfinement, and (Super) Yang-Mills Theory
We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl
fermion on R^3xS^1 as a function of the fermion mass m and the compactification
scale L. This theory reduces to thermal pure gauge theory as m->infinity and to
circle-compactified (non-thermal) supersymmetric gluodynamics in the limit
m->0. In the m-L plane, there is a line of center symmetry changing phase
transitions. In the limit m->infinity, this transition takes place at
L_c=1/T_c, where T_c is the critical temperature of the deconfinement
transition in pure Yang-Mills theory. We show that near m=0, the critical
compactification scale L_c can be computed using semi-classical methods and
that the transition is of second order. This suggests that the deconfining
phase transition in pure Yang-Mills theory is continuously connected to a
transition that can be studied at weak coupling. The center symmetry changing
phase transition arises from the competition of perturbative contributions and
monopole-instantons that destabilize the center, and topological molecules
(neutral bions) that stabilize the center. The contribution of molecules can be
computed using supersymmetry in the limit m=0, and via the
Bogomolnyi--Zinn-Justin (BZJ) prescription in the non-supersymmetric gauge
theory. Finally, we also give a detailed discussion of an issue that has not
received proper attention in the context of N=1 theories---the non-cancellation
of nonzero-mode determinants around supersymmetric BPS and KK
monopole-instanton backgrounds on R^3xS^1. We explain why the non-cancellation
is required for consistency with holomorphy and supersymmetry and perform an
explicit calculation of the one-loop determinant ratio.Comment: A discussion of the non-cancellation of the nonzero mode determinants
around supersymmetric monopole-instantons in N=1 SYM on R^3xS^1 is added,
including an explicit calculation. The non-cancellation is, in fact, required
by supersymmetry and holomorphy in order for the affine-Toda superpotential
to be reproduced. References have also been adde
Index theorem for topological excitations on R^3 * S^1 and Chern-Simons theory
We derive an index theorem for the Dirac operator in the background of
various topological excitations on an R^3 \times S^1 geometry. The index
theorem provides more refined data than the APS index for an instanton on R^4
and reproduces it in decompactification limit. In the R^3 limit, it reduces to
the Callias index theorem. The index is expressed in terms of topological
charge and the eta-invariant associated with the boundary Dirac operator.
Neither topological charge nor eta-invariant is typically an integer, however,
the non-integer parts cancel to give an integer-valued index. Our derivation is
based on axial current non-conservation--an exact operator identity valid on
any four-manifold--and on the existence of a center symmetric, or approximately
center symmetric, boundary holonomy (Wilson line). We expect the index theorem
to usefully apply to many physical systems of interest, such as low temperature
(large S^1, confined) phases of gauge theories, center stabilized Yang-Mills
theories with vector-like or chiral matter (at S^1 of any size), and
supersymmetric gauge theories with supersymmetry-preserving boundary conditions
(also at any S^1). In QCD-like and chiral gauge theories, the index theorem
should shed light into the nature of topological excitations responsible for
chiral symmetry breaking and the generation of mass gap in the gauge sector. We
also show that imposing chirally-twisted boundary condition in gauge theories
with fermions induces a Chern-Simons term in the infrared. This suggests that
some QCD-like gauge theories should possess components with a topological
Chern-Simons phase in the small S^1 regime.Comment: 29 pages, refs added, published versio
Chiral gauge dynamics and dynamical supersymmetry breaking
We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in
the I=3/2 representation and of its supersymmetric generalization. In the
former, we find a new and exotic mechanism of confinement, induced by
topological excitations that we refer to as magnetic quintets. The
supersymmetric version was examined earlier in the context of dynamical
supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that
if this gauge theory confines at the origin of moduli space, one may break
supersymmetry by adding a tree level superpotential. We examine the dynamics by
deforming the theory on S^1 x R^3, and show that the infrared behavior of this
theory is an interacting CFT at small S^1. We argue that this continues to hold
at large S^1, and if so, that supersymmetry must remain unbroken. Our methods
also provide the microscopic origin of various superpotentials in SQCD on S^1 x
R^3 - which were previously obtained by using symmetry and holomorphy - and
resolve a long standing interpretational puzzle concerning a flux operator
discovered by Affleck, Harvey, and Witten. It is generated by a topological
excitation, a "magnetic bion", whose stability is due to fermion pair exchange
between its constituents. We also briefly comment on composite monopole
operators as leading effects in two dimensional anti-ferromagnets.Comment: 30 pages, 5 figure
A New Record for Occurrence of Symphodus bailloni (Osteichthyes: Perciformes: Labridae) in the Western Black Sea Coast of Turkey
The fish species Symphodus bailloni (Valenciennes, 1839) reported in the present study were collected between June 2010 and June 2011 from the western Black Sea coasts which were previously not recorded from the Black Sea coast of Turkey. A total of 717 specimens of S. bailloni were measured, ranging between 8.9 and 15.4 cm TL. Morphometrics, meristics, and diagnostic characteristics of the species are presented
Topological gravity on the lattice
In this paper we show that a particular twist of super
Yang-Mills in three dimensions with gauge group SU(2) possesses a set of
classical vacua corresponding to the space of flat connections of the {\it
complexified} gauge group . The theory also contains a set of
topological observables corresponding to Wilson loops wrapping non-trivial
cycles of the base manifold. This moduli space and set of topological
observables is shared with the Chern Simons formulation of three dimensional
gravity and we hence conjecture that the Yang-Mills theory gives an equivalent
description of the gravitational theory. Unlike the Chern Simons formulation
the twisted Yang-Mills theory possesses a supersymmetric and gauge invariant
lattice construction which then provides a possible non-perturbative definition
of three dimensional gravity.Comment: 10 page
The effects of exhaustive swimming and probiotic administration in trained rats: Oxidative balance of selected organs, colon morphology, and contractility
The duration and intensity of exercise are significant factors in oxidative, morphological, and functional changes of the gastrointestinal tract. This study aimed to investigate the effects of both exhaustive swimming and probiotic VSL#3 on rats that had been previously trained with moderate swimming. The rats were divided into four groups labeled: control (C), probiotic (P), exercise (E), and probiotic–exercise (PE). Groups P and PE were fed with probiotic mixture VSL#3. Groups E and PE had a 5-week moderate swimming program (1 h/day for 5 days/week), followed by a 1-week exhaustive swimming program (trained like in moderate program but 3 times with 150 min resting sessions, for 5 days/week). At the end of the program, the rats were euthanized. Malondialdehyde, superoxide dismutase, catalase, and reduced glutathione levels were measured in tissue samples from the gastrocnemius muscle, heart, liver, kidney, and colon. In vitro contractile activity and histomorphology of the colon were also determined. Exercise and/or probiotic decreased the oxidative stress and also increased the level of one or more of the antioxidant enzymes in some of the organs. Probiotics had more pronounced effects on colon morphology than exercise but unexpectedly this effect was non-trophic. In the colon, the thickness of the tunica muscularis and the number of goblet cells were not affected; however, probiotic administration decreased the crypt depth and tunica mucosa thickness. Exercise increased the Emax value of acetylcholine (ACh), while decreased its sensitivity. These findings suggest that exhaustive swimming does not cause oxidative stress and that probiotic consumption improves oxidative balance in trained rats. The probiotic intake does not alter the effect of exercise on the contractile activity of the colon. Colon mucosal changes induced by probiotics are independent of exercise
- …