237 research outputs found

    Immunization Strategies against Piscirickettsia salmonis Infections: Review of Vaccination Approaches and Modalities and Their Associated Immune Response Profiles

    Get PDF
    Salmonid rickettsial septicemia is a serious, infectious disease in Chilean salmon farming caused by Piscirickettsia salmonis, causing heavy losses to the salmonid industry. P. salmonis belongs to the Gammaproteobacteria, order Thiotrichales. SRS was first described in Chile in 1989, and infection with P. salmonis has since been described from a high number of fish species and in several geographic regions globally. P. salmonis infection of salmonids causes multifocal, necrotic areas of internal organs like liver, kidney and spleen. Histologically and immunologically the tissue response is formation of granulomas, often with central suppuration. The exact sequence of infection is not known but bacteria likely gain access to internal organs through mucosal surfaces and when infected, fish carry bacteria in macrophages. It has not been fully determined if the bacterium resides in the cytosol or hide within vesicular structures intracellularly, although there are indications that in vitro infection results in actin reorganization and formation of actin-coated vesicle within which the bacterium resides. Protection against lethal challenge is well documented in lab scale experiments but protection from vaccination has proven more difficult to attain long term under field conditions. Current vaccination protocols include whole cell, inactivated and adjuvanted vaccines for injection for primary immunization followed by oral boost where timing of boost delivery is followed by measuring circulating antibody levels against the pathogen. Documentation also exist that there is correlation between antibody titers and protection against mortality. Future vaccination regimes will likely also include live, attenuated vaccines or other technologies such as DNA vaccination. So far there is no documentation available for live vaccines and for DNA vaccines, studies have been unsuccessful under laboratory conditions

    Current Advances in Functional Genomics in Aquaculture

    Get PDF
    Gene expression studies in aquaculture have slowly evolved from the traditional reductionist approach of single gene sequencing to high throughput sequencing (HTS) techniques able to sequence entire genomes of living organisms. The upcoming of HTS techniques has led to emergence of metagenomics, nutrigenomics, epigenetics and other omics technologies in aquaculture in the last decade. Metagenomics analyses have accelerated the speed at which emerging pathogens are being discovered, thereby contributing to the design of timely disease control strategies in aquaculture. Using metagenomics, it is easy to identify and monitor microbial communities found in different ecosystems. In vaccine production, genomic studies are being used to identify cross neutralizing antigens against variant strains of the same pathogens. In genetics and epigenetics, genomics traits have been identified that are beginning to gain commercial applications in aquaculture. Nutrigenomics have not only enhanced our understanding of the biological markers for nutrition‐related diseases, but they have also enhanced our ability to formulate diets able to maintain a stable immune homeostasis in the gut. Overall, herein, we have shown that functional genomics provide multifaceted applications ranging from monitoring microbial communities in aquatic environments to optimizing production systems in aquaculture

    Immunohistochemical detection of piscine reovirus (PRV) in hearts of Atlantic salmon coincide with the course of heart and skeletal muscle inflammation (HSMI)

    Get PDF
    Aquaculture is the fastest growing food production sector in the world. However, the increased production has been accompanied by the emergence of infectious diseases. Heart and skeletal muscle inflammation (HSMI) is one example of an emerging disease in farmed Atlantic salmon (Salmo salar L). Since the first recognition as a disease entity in 1999 it has become a widespread and economically important disease in Norway. The disease was recently found to be associated with infection with a novel reovirus, piscine reovirus (PRV). The load of PRV, examined by RT-qPCR, correlated with severity of HSMI in naturally and experimentally infected salmon. The disease is characterized by epi-, endo- and myocarditis, myocardial necrosis, myositis and necrosis of the red skeletal muscle. The aim of this study was to investigate the presence of PRV antigens in heart tissue of Atlantic salmon and monitor the virus distribution in the heart during the disease development. This included target cell specificity, viral load and tissue location during an HSMI outbreak. Rabbit polyclonal antisera were raised against putative PRV capsid proteins Ο1C and σ1 and used in immunohistochemical analysis of archived salmon heart tissue from an experimental infection. The results are consistent with the histopathological changes of HSMI and showed a sequential staining pattern with PRV antigens initially present in leukocyte-like cells and subsequently in cardiomyocytes in the heart ventricle. Our results confirm the association between PRV and HSMI, and strengthen the hypothesis of PRV being the causative agent of HSMI. Immunohistochemical detection of PRV antigens will be beneficial for the understanding of the pathogenesis of HSMI as well as for diagnostic purposes

    An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    Get PDF
    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy

    Transfection efficiency and cytotoxicity of cationic liposomes in salmonid cell lines of hepatocyte and macrophage origin

    Get PDF
    AbstractThe transfection efficiency of liposome-based DNA formulations was studied in different salmonid cell lines of hepatocyte and macrophage origin. Parallel assessment of cell viability was carried out to define the balance between transfection efficiency and toxicity. For all cell lines, transfection efficiency varied with the lipoplex charge ratio and the amount of DNA added to the liposomes. The hepatocyte-derived cell line was most readily transfected while lower transfection efficiency was observed for the macrophage cell lines. The cationic liposomes showed a dose-dependent toxicity and were found to be most toxic for cells of macrophage origin. This was in line with the observation that higher amounts of lipids were associated with the cells of macrophage origin than the hepatocytes. Complexing DNA with the liposomes reduced the toxicity for all three cell lines, most markedly, however, for macrophage cell lines. The differences in the transfection and toxicity patterns between the cell lines are probably caused by differences in membrane composition as well as differences in phagocytic activity and processing of the liposomes/lipoplexes

    Specific nucleotides at the 3′-terminal promoter of viral hemorrhagic septicemia virus are important for virulence in vitro and in vivo

    Get PDF
    AbstractViral hemorrhagic septicemia virus (VHSV), a member of the Novirhabdovirus genus, contains an 11-nucleotide conserved sequence at the terminal 3′- and 5′-untranslated regions (UTRs) that are complementary. To study the importance of nucleotides in the 3′-UTR of VHSV for replication of novirhabdoviruses, we performed site-directed mutagenesis of selected residues at the 3′-terminus and generated mutant viruses using a reverse genetics approach. Assessment of growth kinetics and in vitro real-time cytopathogenicity studies showed that the order of two nucleotides (A4G5) of the 3′-terminus of VHSV directly affects growth kinetics in vitro. The mutant A4G-G5A virus has reduced total positive-strand RNA synthesis efficiency (51% of wild-type) at 48h post-transfection and 70h delay in causing complete cytopathic effect in susceptible fish cells, as compared to the WT-VHSV. Furthermore, when the A4G-G5A virus was used to challenge zebrafish, it exhibited reduced pathogenicity (54% lower end-point mortality) compared to the WT-VHSV. From these studies, we infer that specific residues in the 3′-UTR of VHSV have a promoter function and are essential to modulate the virulence in cells and pathogenicity in fish
    • …
    corecore