109 research outputs found
Automatic Emphysema Detection using Weakly Labeled HRCT Lung Images
A method for automatically quantifying emphysema regions using
High-Resolution Computed Tomography (HRCT) scans of patients with chronic
obstructive pulmonary disease (COPD) that does not require manually annotated
scans for training is presented. HRCT scans of controls and of COPD patients
with diverse disease severity are acquired at two different centers. Textural
features from co-occurrence matrices and Gaussian filter banks are used to
characterize the lung parenchyma in the scans. Two robust versions of multiple
instance learning (MIL) classifiers, miSVM and MILES, are investigated. The
classifiers are trained with the weak labels extracted from the forced
expiratory volume in one minute (FEV) and diffusing capacity of the lungs
for carbon monoxide (DLCO). At test time, the classifiers output a patient
label indicating overall COPD diagnosis and local labels indicating the
presence of emphysema. The classifier performance is compared with manual
annotations by two radiologists, a classical density based method, and
pulmonary function tests (PFTs). The miSVM classifier performed better than
MILES on both patient and emphysema classification. The classifier has a
stronger correlation with PFT than the density based method, the percentage of
emphysema in the intersection of annotations from both radiologists, and the
percentage of emphysema annotated by one of the radiologists. The correlation
between the classifier and the PFT is only outperformed by the second
radiologist. The method is therefore promising for facilitating assessment of
emphysema and reducing inter-observer variability.Comment: Accepted at PLoS ON
Computer-Assisted Annotation of Digital H&E/SOX10 Dual Stains Generates High-Performing Convolutional Neural Network for Calculating Tumor Burden in H&E-Stained Cutaneous Melanoma
Deep learning for the analysis of H&E stains requires a large annotated training set. This may form a labor-intensive task involving highly skilled pathologists. We aimed to optimize and evaluate computer-assisted annotation based on digital dual stains of the same tissue section. H&E stains of primary and metastatic melanoma (N = 77) were digitized, re-stained with SOX10, and re-scanned. Because images were aligned, annotations of SOX10 image analysis were directly transferred to H&E stains of the training set. Based on 1,221,367 annotated nuclei, a convolutional neural network for calculating tumor burden (CNN(TB)) was developed. For primary melanomas, precision of annotation was 100% (95%CI, 99% to 100%) for tumor cells and 99% (95%CI, 98% to 100%) for normal cells. Due to low or missing tumor-cell SOX10 positivity, precision for normal cells was markedly reduced in lymph-node and organ metastases compared with primary melanomas (p < 0.001). Compared with stereological counts within skin lesions, mean difference in tumor burden was 6% (95%CI, −1% to 13%, p = 0.10) for CNN(TB) and 16% (95%CI, 4% to 28%, p = 0.02) for pathologists. Conclusively, the technique produced a large annotated H&E training set with high quality within a reasonable timeframe for primary melanomas and subcutaneous metastases. For these lesion types, the training set generated a high-performing CNN(TB), which was superior to the routine assessments of pathologists
Quantitative high-resolution CT analysis of air trapping and airway thickening in patients with COPD
- …