2 research outputs found

    An application of early fault detection for the crankshaft and piston of an internal combustion engine

    Get PDF
    Internal combustion engines are made of many moving components that are subjected to high inertia and combustion loads. Crankshaft bearing and piston-cylinder walls work under hydrodynamic lubrication conditions. Any failure at those bearing may cause severe damage on the engine. Acceleration measurement on the cylinder block and cylinder was effectively used for early detection of failure in hydrodynamic lubrication. Inspection of the crankshaft and piston components after the test clearly shows that metal-to-metal contact occurred during the test and real-time acceleration signal analysis can help to early detection of the problem

    Modelling manufacturing deformations in corner sections made of composite materials

    Get PDF
    A three-step finite element model has been implemented to predict the spring-in of L-shaped parts. The material property development during the cure has been modelled as step changes during transitions between viscous, rubbery and glassy states of the resin. The tool-part interaction is modelled as a sliding interface with a constant sliding shear stress. The effect of various material and geometric variables on the deformation of L-Section parts are investigated by a parameter sensitivity analysis. The spring-in predictions obtained by the finite element method are compared to experimental measurements for unidirectional and cross-ply parts of various thicknesses and radii. Results indicate that although a 2D plane strain model can predict the spring-in measured at the symmetry plane fairly well, it is not sufficient to capture the complex deformation patterns observed. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav
    corecore