22 research outputs found

    Mosaic structure characterization of the AlInN layer grown on sapphire substrate

    Get PDF
    The 150 nm thick, (0001) orientated wurtzite-phase Al1-x InxN epitaxial layers were grown by metal organic chemical vapor deposition on GaN (2.3 μm) template/(0001) sapphire substrate. The indium (x) concentration of the Al1-x InxN epitaxial layers was changed as 0.04, 0.18, 0.20, 0.47, and 0.48. The Indium content (x), lattice parameters, and strain values in the AlInN layers were calculated from the reciprocal lattice mapping around symmetric (0002) and asymmetric (10-15) reflection of the AlInN and GaN layers. The mosaic structure characteristics of the AlInN layers, such as lateral and vertical coherence lengths, tilt and twist angle, heterogeneous strain, and dislocation densities (edge and screw type dislocations) of the AlInN epilayers, were investigated by using high-resolution X-ray diffraction measurements and with a combination of Williamson-Hall plot and the fitting of twist angles. Copyright © 2014 Engin Arslan et al

    Characterization of an AlN buffer layer and a thick-GaN layer grown on sapphire substrate by MOCVD

    Get PDF
    An AlN buffer layer and a thick-GaN layer for high-electron-mobility transistors (HEMTs) were grown on sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The structural and morphological properties of the layers were investigated by high resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM) techniques. The optical quality of the thick-GaN layer was also evaluated in detail by a photoluminescence (PL) measurement. It was found that the AlN buffer layer possesses high crystal quality and an atomically flat surface with a root-mean-square (rms) roughness of 0.16 nm. The screw-and edge-type dislocation densities of the thick-GaN layer were determined as 5.4 9 107 and 5.0 9 109 cm-2 by means of the mosaic crystal model, respectively. It was observed that the GaN layer has a smooth surface with an rms of 0.84 nm. Furthermore, the dark spot density of the GaN surface was estimated as 6.5 9 108 cm-2 over a scan area of 4 μm2. © Springer Science+Business Media, LLC 2010

    Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    Get PDF
    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 108 cm-2. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer. © 2013 Pleiades Publishing, Ltd

    Structural analysis of an InGaN/GaN based light emitting diode by X-ray diffraction

    Get PDF
    The important structural characteristics of hexagonal GaN in an InGaN/GaN multi quantum well, which was aimed to make a light emitted diode and was grown by metalorganic chemical vapor deposition on c-plain sapphire, are determined by using nondestructive high-resolution X-ray diffraction in detail. The distorted GaN layers were described as mosaic crystals characterized by vertical and lateral coherence lengths, a mean tilt, twist, screw and edge type threading dislocation densities. The rocking curves of symmetric (00.l) reflections were used to determine the tilt angle, while the twist angle was an extrapolated grown ω-scan for an asymmetric (hk.l) Bragg reflection with an h or k nonzero. Moreover, it is an important result that the mosaic structure was analyzed from a different (10.l) crystal direction that was the angular inclined plane to the z-axis. The mosaic structure parameters were obtained in an approximately defined ratio depending on the inclination or polar angle of the sample. © 2009 Springer Science+Business Media, LLC

    Buffer effects on the mosaic structure of the HR-GaN grown on 6H-SiC substrate by MOCVD

    Get PDF
    High-resistive GaN (>108 Ω cm) layers have been grown with different buffer structures on 6H-SiC substrate using metalorganic chemical vapor deposition reactor. Different combination of the GaN/AlN super lattice, low temperature AlN, high temperature AlN and AlxGa1−xN (x ≈ 0.67) layers were used in the buffer structures. The growth parameters of the buffer layers were optimized for obtaining a high-resistive GaN epilayer. The mosaic structure parameters, such as lateral and vertical coherence lengths, tilt and twist angle (and heterogeneous strain), and dislocation densities (edge and screw dislocations) of the high-resistive GaN epilayers have been investigated using x-ray diffraction measurements. In addition, the residual stress behaviors in the high-resistive GaN epilayers were determined using both x-ray diffraction and Raman measurements. It was found that the buffer structures between the HR-GaN and SiC substrate have been found to have significant effect on the surface morphology and the mosaic structures parameters. On the other hand, both XRD and Raman results confirmed that there is low residual stress in the high-resistive GaN epilayers grown on different buffer structures. © 2016, Springer Science+Business Media New York

    Characterization of AlInN/AlN/GaN Heterostructures with Different AlN Buffer Thickness

    Get PDF
    Two AlInN/AlN/GaN heterostructures with 280-nm- and 400-nm-thick AlN buffer grown on sapphire substrates by metal-organic chemical vapor deposition (MOCVD) have been investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and Hall-effect measurements. The symmetric (0002) plane with respect to the asymmetric (101 ¯ 2) plane in the 280-nm-thick AlN buffer has a higher crystal quality, as opposed to the 400-nm-thick buffer. The thinner buffer improves the crystallinity of both (0002) and (101 ¯ 2) planes in the GaN layers, it also provides a sizeable reduction in dislocation density of GaN. Furthermore, the lower buffer thickness leads to a good quality surface with an rms roughness of 0.30 nm and a dark spot density of 4.0 × 108 cm−2. The optical and transport properties of the AlInN/AlN/GaN structure with the relatively thin buffer are compatible with the enhancement in its structural quality, as verified by XRD and AFM results. © 2016, The Minerals, Metals & Materials Society

    Microstructural analysis with graded and non-graded indium in InGaN solar cell

    Get PDF
    In this study are graded and non graded InGaN/GaN samples grown on c-oriented sapphire substrate using the Metal Organic Chemical Vapour Deposition (MOCVD) technique. The structural and morphological properties of the grown InGaN/GaN solar cell structures are analyzed using High Resolution X-ray Diffraction (HRXRD), atomic force microscopy (AFM). Each structures c and a lattice parameters strain, biaxial strain, hydrostatic strain, stress, lattice relax, tilt angle, mosaic crystal size, dislocation densities of GaN and InGaN layers are determined by XRD measurements. In accordance with these calculations, the effect of graded structure on the defects, are discussed. As a dramatic result; although values of full width at half maximum (FWHM) are broad, a considerable decrease at dislocations is noticed. The AFM observations have revealed that the two dimensional growth of the graded sample is more significant and its roughness value is lower. JV measurements shown that the performance of the graded structure is higher. It is determined that all test results are consistent with each other. © Copyright 2017 by American Scientific Publishers. All rights reserved

    Structural and optical properties of an InxGa1-xN/GaN nanostructure

    Get PDF
    The structural and optical properties of an InxGa1-xN/GaN multi-quantum well (MQW) were investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry (SE) and photoluminescence (PL). The MQW structure was grown on c-plane (0 0 0 1)-faced sapphire substrates in a low pressure metalorganic chemical vapor deposition (MOCVD) reactor. The room temperature photoluminescence spectrum exhibited a blue emission at 2.84 eV and a much weaker and broader yellow emission band with a maximum at about 2.30 eV. In addition, the optical gaps and the In concentration of the structure were estimated by direct interpretation of the pseudo-dielectric function spectrum. It was found that the crystal quality of the InGaN epilayer is strongly related with the Si doped GaN layer grown at a high temperature of 1090 °C. The experimental results show that the growth MQW on the high-temperature (HT) GaN buffer layer on the GaN nucleation layer (NL) can be designated as a method that provides a high performance InGaN blue light-emitting diode (LED) structure. © 2007 Elsevier B.V. All rights reserved

    Examination of the temperature related structural defects of InGaN/GaN solar cells

    Get PDF
    In this study the effects of the annealing temperature on the InGaN/GaN solar cells with different In-contents grown on sapphire substrate by the Metal Organic Chemical Vapor Deposition (MOCVD) are analyzed by High Resolution X-ray Diffraction (HRXRD) and an Atomic Force Microscope (AFM). The plane angles, mosaic crystal sizes, mixed stress, dislocation intensities of the structure of the GaN and InGaN layers are determined. According to the test results, there are no general characteristic trends observed due to temperature at both structures. There are fluctuating failures determined at both structures as of 350 °C. The defect density increased on the GaN layer starting from 350 °C and reaching above 400 °C. A similar trend is observed on the InGaN layer, too. © 2015 Elsevier Ltd. All rights reserved
    corecore