28 research outputs found

    Endotel Hücreleri Arasında Nanotüp Tünellemenin ve Organel İletiminin Görüntülenmesi

    No full text
    Nanotüp tünelleme hücreler arası iletişimde rol almaktadır. Ökaryotik hücrelerin yenilenmek, hayatta kalmak ya da strese direnmek üzere nanotüp tüneller oluşturduğu düşünülmektedir. Homotipik ya da heterotipik hücreler arasında köprüler oluşturan nanotüp tünellerin kalsiyum iyon akışı gibi sinyal moleküllerini ilettiği, organel, patojen ya da onkojenik molekülleri aktardığı gösterilmiştir. Nanotüp tünellerin temel yapısı mikrofilamentlerdir. Stres oluşturan çevresel etkenler altında aktin iskeletinin nanotüp tünellerin oluşmasını tetiklediği ve birbirinden uzak iki hücre arasında köprü oluşturduğu belirlenmiştir. Uzun-süreli hücre kültürü ortamı endotel hücrelerinde strese neden olmakta ve hücresel yaşlanma oluşmaktadır. Bu çalışmada standart hücre kültürü ortamında tekrarlayan pasajlar (P) ile çoğaltılan insan göbek kordonu damar endotel hücreleri (HUVEC) arasında nanotüp tünellemenin görüntülenmesi amaçlandı. Floresan mikroskop incelemesi için aktin iskeleti ve endozomlar sırası ile falloidin ve anti-EEA1 antikoru ile işaretlendi. Kontrol grubu (P3-4) ve deney grubu (P8-10) HUVEC’ler ile hazırlanan preparatlarda nanotüp tünel uzunlukları ölçüldü. P8-10 için ortalama uzunluk 30 µm olarak belirlendi. Endozomların nanotüp tünel yapısındaki aktin iskeleti ile birlikte konumlandığı gösterildi. Bu bulgular, hücre içinde kargo taşıyan endozomların, nanotüp tünelleme ile HUVEC’ler arasında da madde aktarımı yapabileceğini göstermektedir. Sonuçta tekrarlayan pasajlar ile çoğaltılan HUVEC’ler arasındaki nanotüp tünellerin mikrofilamentlerin dinamiğine bağlı olarak işlevsel olduğu belirlenmiştir. Hücreler arasında yeni bir iletişim yolu olarak kabul gören nanotüp tünelleme, stres cevabının irdelendiği çalışmalarda morfolojik bir parametre olarak değerlendirilebilir

    Birbirinden uzak endotel hücreleri arasında nanotüp tünellemenin görüntülenmesi

    No full text
    Nanotüp tünelleme hücreler arası iletişimde rol almaktadır. Ökaryotik hücrelerin yenilenmek, hayatta kalmak ya da strese direnmek üzere nanotüp tüneller oluşturduğu düşünülmektedir. Homotipik ya da heterotipik hücreler arasında köprüler oluşturan nanotüp tünellerin kalsiyum iyon akışı gibi sinyal moleküllerini ilettiği, organel, patojen ya da onkojenik molekülleri aktardığı gösterilmiştir. Nanotüp tünellerin temel yapısı mikrofilamentlerdir. Stres oluşturan çevresel etkenler altında aktin iskeletinin nanotüp tünellerin oluşmasını tetiklediği ve birbirinden uzak iki hücre arasında köprü oluşturduğu belirlenmiştir. Uzun-süreli hücre kültürü ortamı endotel hücrelerinde strese neden olmakta ve hücresel yaşlanma oluşmaktadır. Bu çalışmada standart hücre kültürü ortamında tekrarlayan pasajlar (P) ile çoğaltılan insan göbek kordonu damar endotel hücreleri (HUVEC) arasında nanotüp tünellemenin görüntülenmesi amaçlandı. Floresan mikroskop incelemesi için aktin iskeleti ve endozomlar sırası ile falloidin ve anti-EEA1 antikoru ile işaretlendi. Kontrol grubu (P3-4) ve deney grubu (P8-10) HUVEC’ler ile hazırlanan preparatlarda nanotüp tünel uzunlukları ölçüldü. P8-10 için ortalama uzunluk 30 µm olarak belirlendi. Endozomların nanotüp tünel yapısındaki aktin iskeleti ile birlikte konumlandığı gösterildi. Bu bulgular, hücre içinde kargo taşıyan endozomların, nanotüp tünelleme ile HUVEC’ler arasında da madde aktarımı yapabileceğini göstermektedir. Sonuçta tekrarlayan pasajlar ile çoğaltılan HUVEC’ler arasındaki nanotüp tünellerin mikrofilamentlerin dinamiğine bağlı olarak işlevsel olduğu belirlenmiştir. Hücreler arasında yeni bir iletişim yolu olarak kabul gören nanotüp tünelleme, stres cevabının irdelendiği çalışmalarda morfolojik bir parametre olarak değerlendirilebilir.The tunneling nanotube plays a role in intercellular communication. Nanotube tunnels are thought to be formed to regenerate, to survive or to resist stress by eukaryotic cells. Nanotube tunnels, forming bridges between homotypic and heterotypic cells, have shown to transmit signal ing molecules such as calcium ion flux, and to transport organelles, pathogens or oncogenic molecules. The basic structure of nanotube tunnels is microfilaments. The actin skeleton triggers the formation of a nanotube tunnel and a bridge between two distant cells under stress ing conditions. Cellular aging occurs in endothelial cells in a long-term cell culture. In this study, it is aimed to visualize nanotube tunneling between endothelial cells under cellular aging. Human umbilical cord vascular endothelial cells (HUVECs) were grown in the standard cell culture conditions with repeated passages (P). The actin cytoskeleton and endosomes were labeled with phalloidin and anti-EEA1 antibody respectively, for fluorescence microscopy. Nanotube tunnel lengths were measured in control (P3-4) and experimental (P8-10) HUVECs preparations. The average length for P8-10 was determined to be 30 µm. The endosomes were located together with the actin cytoskeleton in the nanotube tunnel. These findings show that endosomes, cargo-carrier inside the cell, can also transfer substances between HUVECs by nanotube tunneling. As a result, nanotube tunnels, formed between HUVECs of high passages depending on the dynamics of the microfila ments, were found to be functional. Nanotube tunneling, accepted as a new way of communication between cells, can be evaluated as a morphological parameter in studies of stress responses

    F-actin Stabilization by Jasplakinolide in Endothelial Cells and Diphtheria Toxin Traffic

    No full text
    Amaç: Ökaryotik hücrelerde mikrofilament yapısının ana bileşeni olan aktin, sinyal yolaklarını aktin bağlayan proteinlerle etkileşerek düzenler. Daha önceki çalışmalarımızda difteri toksini ve mutant difteri toksini (CRM-197) ile enfekte olan endotel hücrelerinde toksinin A fragmenti ile etkileşen filamentöz aktinin depolimerleştiği saptanmıştır. Bu çalışmada endotel hücrelerinde F-aktin stabilizasyonu sağlanarak difteri toksininin hücre içi trafiğinin belirlenmesi amaçlanmıştır. Gereç ve Yöntem: Hücre kültüründe endotel hücreleri çoğaltıldı ve jasplakinolid (0.1 µmol/ml) ile sırası ile 30 ve 60 dakika uygulandı. Diferi toksini (0.75 nmol/ml) uygulaması için jasplakinolid ile inkübasyon süresi 15 dakika ile sınırlandırıldı. Hücre içi F-aktin stabilizasyonu ve difteri toksini trafiği immünofloresan mikroskopisi ile görüntülendi. Bulgular: Bekletme süresine bağlı olarak stres liflerinin jasplakinolid uygulanan endotel hücrelerinin hücre zarında belirginleştiği belirlendi. F-aktin stabilizasyonu sağlanan endotel hücrelerinde difteri toksini trafiğinin engellenmediği ve A fragmenti’nin perinükleer alana yöneldiği görüntülendi. Sonuç: Hücre içinde F-aktin stabilizasyonu ile G-aktin/F-aktin dönüşümünün engellenmesi difteri toksini trafiğini durdurmamaktadır. Bu sonuç toksin trafiğinde filamentöz aktinin önemini gösteren çalışmaları desteklemektedir.Objective: Actin, the main component of microfilament structure in eukaryotic cells, regulates signaling pathways by interacting with actin binding proteins. Our previous studies have shown that depolymerization of filamentous actin (F-actin) occurs following its interaction with fragment A of the toxin in endothelial cells infected with diphtheria toxin and mutant diphtheria toxin (CRM-197) . In this study, it was aimed to determine intracellular trafficking of diphtheria toxin by stabilization of F-actin in endothelial cells. Material and Methods: Human umbilical vein endothelial cells were cultured and incubated with 0.1 ?M jasplakinolide for 30 and 60 minutes respectively. For diphtheria toxin (0.75 nM) treatment, the incubation period with jasplakinolide was limited to 15 minutes. Intracellular stabilization of F-actin and diphtheria toxin traffic were visualized using immunofluorescence microscopy. Results: Depending on the duration of the incubation period, it was determined that the stress fibers were expressed in the cell membrane of the endothelial cells treated with jasplakinolide. It was shown that diphtheria toxin trafficking was not inhibited in F-actin-stabilized endothelial cells and fragment A was directed to the perinuclear area. Conclusion: Inhibition of G-actin / F-actin turnover in steady state by intracellular F-actin stabilization does not stop diphtheria toxin trafficking. This result supports studies showing the importance of filamentous actin in toxin trafficking
    corecore