1,219 research outputs found

    Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking

    Full text link
    We report the experimental demonstration of a transmission scheme of photonic qubits over unstabilized optical fibers, which has the plug-and-play feature as well as the ability to transmit any state of a qubit, regardless of whether it is known, unknown, or entangled to other systems. A high fidelity to the noiseless quantum channel was achieved by adding an ancilla photon after the signal photon within the correlation time of the fiber noise and by performing quantum parity checking. Simplicity, maintenance-free feature and robustness against path-length mismatches among the nodes make our scheme suitable for multi-user quantum communication networks.Comment: 8 pages, 4 figures; published in New J. Phys. and selected in IOP Selec

    Spinning cosmic strings: a general class of solutions

    Full text link
    In this work, we give a general class of solutions of the spinning cosmic string in Einstein's theory of gravity. After treating same problem in Einstein Cartan (EC) theory of gravity, the exact solution satisfying both exterior and interior space-times representing a spin fluid moving along the symmetry axis is presented in the EC theory. The existence of closed timelike curves in this spacetime are also examined

    Coupled wake boundary layer model of wind-farms

    Get PDF
    We present and test the coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake model approach with a "top-down" model for the overall wind-farm boundary layer structure. This wake model captures the effect of turbine positioning, while the "top-down" portion of the model adds the interactions between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model, the wake expansion coefficient is required, while the "top-down" model requires an effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing depends on turbine positioning and thus can be determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We illustrate the performance of the model by applying it to both developing wind-farms including entrance effects and to fully developed (deep-array) conditions. Comparisons of the CWBL model predictions with results from a suite of large eddy simulations (LES) shows that the model closely represents the results obtained in these high-fidelity numerical simulations. A comparison with measured power degradation at the Horns Rev and Nysted wind-farms shows that the model can also be successfully applied to real wind-farms.Comment: 25 pages, 21 figures, submitted to Journal of Renewable and Sustainable Energy on July 18, 201

    Iridium(i) complexes bearing hemilabile coumarin-functionalised N-heterocyclic carbene ligands with application as alkyne hydrosilylation catalysts

    Get PDF
    A set of iridium(i) complexes of formula IrCl(¿C, ¿2-IRCouR')(cod) or IrCl(¿C, ¿2-BzIRCouR')(cod) (cod = 1, 5-cyclooctadiene; Cou = coumarin; I = imidazolin-2-carbene; BzI = benzimidazolin-2-carbene) have beeen prepared from the corresponding azolium salt and [Ir(µ-OMe)(cod)]2 in THF at room temperature. The crystalline structures of 4b and 5b show a distorted trigonal bipyramidal configuration in the solid state with a coordinated coumarin moiety. In contrast, an equilibrium between this pentacoordinated structure and the related square planar isomer is observed in solution as a consequence of the hemilability of the pyrone ring. Characterization of both species by NMR was achieved at the low and high temperature limits, respectively. In addition, the thermodynamic parameters of the equilibrium, ¿HR and ¿SR, were obtained by VT 1H NMR spectroscopy and fall in the range 22-33 kJ mol-1 and 72-113 J mol-1 K-1, respectively. Carbonylation of IrCl(¿C, ¿2-BzITolCou7, 8-Me2)(cod) resulted in the formation of a bis-CO derivative showing no hemilabile behaviour. The newly synthesised complexes efficiently catalyze the hydrosilylation of alkynes at room temperature with a preference for the ß-(Z) vinylsilane isomer. © The Royal Society of Chemistry

    Gravitational shock waves and vacuum fluctuations

    Get PDF
    We show that the vacuum expectation value of the stress-energy tensor of a scalar particle on the background of a spherical gravitational shock wave does not give a finite expression in second order perturbation theory, contrary to the case seen for the impulsive wave. No infrared divergences appear at this order. This result shows that there is a qualitative difference between the shock and impulsive wave solutions which is not exhibited in first order.Comment: Submitted to Class. and Quant. Grav.,7 pages, no figure

    One-way quantum computing in a decoherence-free subspace

    Full text link
    We introduce a novel scheme for one-way quantum computing (QC) based on the use of information encoded qubits in an effective cluster state resource. With the correct encoding structure, we show that it is possible to protect the entangled resource from phase damping decoherence, where the effective cluster state can be described as residing in a Decoherence-Free Subspace (DFS) of its supporting quantum system. One-way QC then requires either single or two-qubit adaptive measurements. As an example where this proposal can be realized, we describe an optical lattice setup where the scheme provides robust quantum information processing. We also outline how one can adapt the model to provide protection from other types of decoherence.Comment: 9 pages, 4 figures, RevTeX

    Shepherding with robots that do not compute

    Get PDF
    We examine the problem solving capabilities of swarms of computation- and memory-free agents. Each agent has a single line-of-sight sensor providing two bits of information. The agent maps this information directly onto constant motor commands. In previous work, we showed that such simplistic agents can solve tasks requiring them to organize spatially (multi-robot aggregation and circle formation) and manipulate passive objects (clustering). In the present work, we address the shepherding problem, where the computation- and memory-free agents—the shepherds—are tasked to gather and move a group of dynamic agents—the sheep—towards a pre-defined goal. The shepherds and sheep are modelled as e-puck robots using computer simulations. Our findings show that the shepherding problem does not fundamentally require arithmetic computation or memory to be solved. The obtained controller solution is robust with respect to sensory noise, and copes well with changes in the number of sheep

    Particle Creation If a Cosmic String Snaps

    Get PDF
    We calculate the Bogolubov coefficients for a metric which describes the snapping of a cosmic string. If we insist on a matching condition for all times {\it and} a particle interpretation, we find no particle creation.Comment: 10 pages, MRC.PH.17/9
    • …
    corecore