4 research outputs found

    Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters

    Get PDF
    Treatment of an anionic dimanganaborylene complex ([{Cp(CO)2Mn}2B]–) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe2) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M2B2 cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B2M2 units and M4 (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy3)2) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d10-d10 dispersion interactions between the copper and platinum fragments

    Synthesis and Characterisation of Novel Di-, Tri-, and Tetrametalloborido Complexes

    No full text
    Unter Ausnutzung der ReaktivitĂ€t von Borylanionen wurden neuartige Übergangsmetallboridokomplexe synthetisiert, bei denen ein "nacktes" Boratom als Ligand fĂŒr bis zu vier Übergangsmetalle vorliegt. Strukturelle und bindungstheoretische Eigenschaften der Boridokomplexe wurden mit gĂ€ngigen metallorganischen Analysemethoden sowie mit DFT-Methoden untersucht. Dabei zeigte sich, dass die erhaltenen Tetrametalloboridokomplexe eine planare Koordinationsgeometrie um das Borzentrum aufweisen und damit ein Äquivalent zu anti van't Hoff/Le Bel-Verbindungen des Kohlenstoffs darstellen.Exploiting the reactivity of boryl anions, novel transition metal borido complexes were synthesised. Borido complexes feature a "naked" boron atom that serves as a ligand for up to four metals. Structucal characterisation of the boridokomplexes was carried out by means of common analytical methods as well as DFT-calculations. Tetrametalloborido complexes showed a remarkably planar geometry around the boron center and can therefore be considered as anti van't Hoff/Le Bel compounds

    You cannot fight the pressure: Structural rearrangements of active pharmaceutical ingredients under magic angle spinning

    No full text
    Although solid-state nuclear magnetic resonance (NMR) is a versatile analytical tool to study polymorphs and phase transitions of pharmaceutical molecules and products, this work summarizes examples of spontaneous and unexpected (and unwanted) structural rearrangements and phase transitions (amorphous-to-crystalline and crystalline-to-crystalline) under magic angle spinning (MAS) conditions, some of them clearly being due to the pressure experienced by the samples. It is widely known that such changes can often be detected by X-ray powder diffraction (XRPD); here, the capability of solid-state NMR experiments with a special focus on 1^{1}H-13^{13}C frequency-switched Lee–Goldburg heteronuclear correlation (FSLG HETCOR)/MAS NMR experiments to detect even subtle changes on a molecular level not observable by conventional 1D NMR experiments or XRPD is presented. Furthermore, it is shown that a polymorphic impurity combined with MAS can induce a crystalline-to-crystalline phase transition. This showcases that solid-state NMR is not always noninvasive and such changes upon MAS should be considered in particular when compounds are studied over longer time spans

    Afatinib in Non‐Small Cell Lung Cancer Harboring Uncommon EGFR

    No full text
    corecore