388 research outputs found

    Steady-State Ab Initio Laser Theory for N-level Lasers

    Full text link
    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state

    Antisymmetric PT-photonic structures with balanced positive and negative index materials

    Full text link
    We propose a new class of synthetic optical materials in which the refractive index satisfies n(-\bx)=-n^*(\bx). We term such systems antisymmetric parity-time (APT) structures. Unlike PT-symmetric systems which require balanced gain and loss, i.e. n(-\bx)=n^*(\bx), APT systems consist of balanced positive and negative index materials. Despite the seemingly PT-symmetric optical potential V(\bx)\equiv n(\bx)^2\omega^2/c^2, APT systems are not invariant under combined PT operations due to the discontinuity of the spatial derivative of the wavefunction. We show that APT systems can display intriguing properties such as spontaneous phase transition of the scattering matrix, bidirectional invisibility, and a continuous lasing spectrum.Comment: 5 pages, 4 figure

    Quench dynamics of a disordered array of dissipative coupled cavities

    Get PDF
    We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in presence of dissipation and disorder. We follow the evolution of on an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission and that these properties can be used as signatures of the many-body phase of the whole array.Comment: 8 pages, 10 figures, new reference adde
    • …
    corecore