1 research outputs found
A Bayesian approach to discrete object detection in astronomical datasets
A Bayesian approach is presented for detecting and characterising the signal
from discrete objects embedded in a diffuse background. The approach centres
around the evaluation of the posterior distribution for the parameters of the
discrete objects, given the observed data, and defines the
theoretically-optimal procedure for parametrised object detection. Two
alternative strategies are investigated: the simultaneous detection of all the
discrete objects in the dataset, and the iterative detection of objects. In
both cases, the parameter space characterising the object(s) is explored using
Markov-Chain Monte-Carlo sampling. For the iterative detection of objects,
another approach is to locate the global maximum of the posterior at each
iteration using a simulated annealing downhill simplex algorithm. The
techniques are applied to a two-dimensional toy problem consisting of Gaussian
objects embedded in uncorrelated pixel noise. A cosmological illustration of
the iterative approach is also presented, in which the thermal and kinetic
Sunyaev-Zel'dovich effects from clusters of galaxies are detected in microwave
maps dominated by emission from primordial cosmic microwave background
anisotropies.Comment: 20 pages, 12 figures, accepted by MNRAS; contains some additional
material in response to referee's comment