1 research outputs found

    Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordIntroduction: Hydrogen sulfide (H2S) was revealed to inhibit aortic valve calcification and inflammation was implicated in the pathogenesis of calcific aortic valve disease (CAVD). Objectives: We investigate whether H2S inhibits mineralization via abolishing inflammation. Methods and results: Expression of pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were increased in patients with CAVD and in calcified aortic valve of ApoE-/- mice. Administration of H22S releasing donor (4-methoxyphenyl piperidinylphosphinodithioc acid (AP72)) exhibited inhibition on both calcification and inflammation in aortic valve of apolipoprotein E knockout mice (ApoE-/-) mice is reflected by lowering IL-1β and TNF-α levels. Accordingly, AP72 prevented the accumulation of extracellular calcium deposition and decreased nuclear translocation of nuclear factor-κB (NF-κB) in human valvular interstitial cells (VIC). This was also accompanied by reduced cytokine response. Double-silencing of endogenous H2S producing enzymes, Cystathionine gamma-lyase (CSE) and Cystathionine beta-synthase (CBS) in VIC exerted enhanced mineralization and higher levels of IL-1β and TNF-α. Importantly, silencing NF-κB gene or its pharmacological inhibition prevented nuclear translocation of runt-related transcription factor 2 (Runx2) and subsequently the calcification of human VIC. Increased levels of NF-κB and Runx2 and their nuclear accumulation occurred in ApoE-/- mice with a high-fat diet. Administration of AP72 decreased the expression of NF-κB and prevented its nuclear translocation in VIC of ApoE-/- mice on a high-fat diet, and that was accompanied by a lowered pro-inflammatory cytokine level. Similarly, activation of Runx2 did not occur in VIC of ApoE-/- mice treated with H2S donor. Employing Stimulated Emission Depletion (STED) nanoscopy, a strong colocalization of NF-κB and Runx2 was detected during the progression of valvular calcification. Conclusions: Hydrogen sulfide inhibits inflammation and calcification of aortic valve. Our study suggests that the regulation of Runx2 by hydrogen sulfide (CSE/CBS) occurs via NF-κB establishing a link between inflammation and mineralization in vascular calcification.Hungarian Academy of SciencesHungarian GovernmentEuropean UnionEuropean Regional Development Fund (ERDF)Medical Research Council (MRC)Brian Ridge ScholarshipMinistry for Innovation and Technology, Hungar
    corecore