36 research outputs found

    Calculation of the energy spectrum of a two-electron spherical quantum dot

    Full text link
    We study the energy spectrum of the two-electron spherical parabolic quantum dot using the exact Schroedinger, the Hartree-Fock, and the Kohn-Sham equations. The results obtained by applying the shifted-1/N method are compared with those obtained by using an accurate numerical technique, showing that the relative error is reasonably small, although the first method consistently underestimates the correct values. The approximate ground-state Hartree-Fock and local-density Kohn-Sham energies, estimated using the shifted-1/N method, are compared with accurate numerical self-consistent solutions. We make some perturbative analyses of the exact energy in terms of the confinement strength, and we propose some interpolation formulae. Similar analysis is made for both mean-field approximations and interpolation formulae are also proposed for these exchange-only ground-state cases.Comment: 18 pages, LaTeX, 2 figures-ep

    Propagation and Structure of Planar Streamer Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations. In the present long paper, you find the physics of the model and the interfacial approach further explained. As a first ingredient of this approach, we here analyze planar fronts, their profile and velocity. We encounter a selection problem, recall some knowledge about such problems and apply it to planar streamer fronts. We make analytical predictions on the selected front profile and velocity and confirm them numerically. (abbreviated abstract)Comment: 23 pages, revtex, 14 ps file

    Structure of the Wigner crystal

    No full text
    corecore