35 research outputs found

    Atomistic structure simulation of silicon nanocrystals driven with suboxide penalty energies

    Get PDF
    The structural control of silicon nanocrystals embedded in amorphous oxide is currently an important technological problem. In this work, an approach is presented to simulate the structural behavior of silicon nanocrystals embedded in amorphous oxide matrix based on simple valence force fields as described by Keating-type potentials. After generating an amorphous silicon-rich-oxide, its evolution towards an embedded nanocrystal is driven by the oxygen diffusion process implemented in the form of a Metropolis algorithm based on the suboxide penalty energies. However, it is observed that such an approach cannot satisfactorily reproduce the shape of annealed nanocrystals. As a remedy, the asphericity and surface-to-volume minimization constraints are imposed. With the aid of such a multilevel approach, realistic-sized silicon nanocrystals can be simulated. Prediction for the nanocrystal size at a chosen oxygen molar fraction matches reasonably well with the experimental data when the interface region is also accounted. The necessity for additional shape constraints suggests the use of more involved force fields including long-range forces as well as accommodating different chemical environments such as the double bonds. Copyright © 2008 American Scientific Publishers All rights reserved

    Brownian Motors driven by Particle Exchange

    Full text link
    We extend the Langevin dynamics so that particles can be exchanged with a particle reservoir. We show that grand canonical ensembles are realized at equilibrium and derive the relations of thermodynamics for processes between equilibrium states. As an application of the proposed evolution rule, we devise a simple model of Brownian motors driven by particle exchange. KEYWORDS: Langevin Dynamics, Thermodynamics, Open SystemsComment: 5 pages, late

    III. Crack propagation in a tantalum nano-slab

    No full text
    Abstract. Using molecular dynamics with an accurate many-body potential for metallic Tantalum, we studied crack propagation in a pre-notched nano-slab under uniaxial strain in a [100] direction. We study dislocation emission from the crack tip for various strain rate and temperatures, focusing on the influence of the local temperature at the crack tip on the propagation of the crack. We find a close connection between the local temperature at the crack tip and dislocation emission
    corecore