10 research outputs found

    Defining the causes of sporadic Parkinson’s disease in the global Parkinson’s genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Author Correction: Elucidating causative gene variants in hereditary Parkinson’s disease in the Global Parkinson’s Genetics Program (GP2)

    Get PDF
    Correction to: s41531-023-00526-9 npj Parkinson’s Disease, published online 27 June 2023 In this article the Global Parkinson’s Genetics Program (GP2) members names and affiliations were missing in the main author list of the Original article which are listed in the below

    Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration

    No full text
    Osteochondral lesions treatment and regeneration demands biomimetic strategies aiming physicochemical and biological properties of both bone and cartilage tissues, with long-term clinical outcomes. Hydrogels and scaffolds, appeared as assertive approaches to guide the development and structure of the new osteochondral engineered tissue. Moreover, these structuresalone or in combination with cells and bioactive molecules, bring the mechanical support after in vitro and in vivo implantation. Moreover, multilayered structures designed with continuous interfaces, furnish appropriate features of the cartilage and subchondral regions, namely microstructure, composition, and mechanical properties. Owing the potential as scaffolding materials, natural and synthetic polymers, bioceramics, and composites, have been employed. Particularly, significance is attributed to the natural-based biopolymer silk ï¬ broin from the Bombyx mori silkworm, considering its unique mechanical and biological properties. The significant studies on silk fibroin-based structures, namely hydrogels and scaffolds, towards bone, cartilage, and osteochondral tissue repair and regeneration are overviewed herein. The developed biomimetic strategies, processing methodologies, and final properties of the structures are summarized and discussed in depth.s The authors thank to the project FROnTHERA (NORTE-01-0145- FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The financial support from the Portuguese Foundation for Science and Technology to Hierarchitech project (M-ERA-NET/0001/2014), for the fellowship grant (SFRH/ BPD/113806/2015) and for the fund provided under the program Investigador for J. M. Oliveira (IF/00423/2012 and IF/01285/2015) are also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris)

    No full text

    Mental stress as consequence and cause of vision loss: the dawn of psychosomatic ophthalmology for preventive and personalized medicine

    No full text
    corecore