11 research outputs found

    Current profiles and early predictors of reading skills in school-age children with autism spectrum disorders: A longitudinal, retrospective population study

    Get PDF
    This study explores current reading profiles and concurrent and early predictors of reading in children with autism spectrum disorder. Before the age of 3 years, the study cohort underwent a neurodevelopmental assessment following identification in a population-based autism screening. At age 8 years, reading, language and cognition were assessed. Approximately half of the sample (n = 25) were ‘poor readers’ at age 8 years, meaning that they scored below the normal range on tests of single word reading and reading comprehension. And 18 were ‘skilled readers’ performing above cut-offs. The final subgroup (n = 10) presented with a ‘hyperlexic/poor comprehenders’ profile of normal word reading, but poor reading comprehension. The ‘poor readers’ scored low on all assessments, as well as showing more severe autistic behaviours than ‘skilled readers’. Group differences between ‘skilled readers’ and ‘hyperlexics/poor comprehenders’ were more subtle: these subgroups did not differ on autistic severity, phonological processing or non-verbal intelligence quotient, but the ‘hyperlexics/poor comprehenders’ scored significantly lower on tests of oral language. When data from age 3 were considered, no differences were seen between the subgroups in social skills, autistic severity or intelligence quotient. Importantly, however, it was possible to identify oral language weaknesses in those that 5 years later presented as ‘poor readers’ or ‘hyperlexics’

    Bumetanide for autism: more eye contact, less amygdala activation.

    Get PDF
    We recently showed that constraining eye contact leads to exaggerated increase of amygdala activation in autism. Here, in a proof of concept pilot study, we demonstrate that administration of bumetanide (a NKCC1 chloride importer antagonist that restores GABAergic inhibition) normalizes the level of amygdala activation during constrained eye contact with dynamic emotional face stimuli in autism. In addition, eye-tracking data reveal that bumetanide administration increases the time spent in spontaneous eye gaze during in a free-viewing mode of the same face stimuli. In keeping with clinical trials, our data support the Excitatory/Inhibitory dysfunction hypothesis in autism, and indicate that bumetanide may improve specific aspects of social processing in autism. Future double-blind placebo controlled studies with larger cohorts of participants will help clarify the mechanisms of bumetanide action in autism

    Pupillary Contagion in Autism.

    No full text
    Pupillary contagion is an involuntary change in the observer's pupil size in response to the pupil size of another person. This effect, presumed to be an important adaption for individuals living in groups, has been documented in both typical infants and adults. Here, for the first time, we report pupillary contagion in individuals with autism, a disorder of social communication. We found that, compared with a typical group ( n = 63), individuals with autism ( n = 54) exhibited comparable pupillary contagion when observing pictures of emotional faces, despite less spontaneous attention toward the eye region. Furthermore, the magnitude of the pupillary response in the autism group was negatively correlated with time spent fixating the eye region. The results suggest that even with less looking toward the eyes, individuals with autism respond to the affective and arousal levels transmitted from other individuals. These results are discussed in the context of an overarousal account of socioaffective-processing differences in autism

    Influence of anxiety and alexithymia on brain activations associated with the perception of others' pain in autism.

    No full text
    The circumstances under which empathy is altered in ASD remain unclear, as previous studies did not systematically find differences in brain activation between ASD and controls in empathy-eliciting paradigms, and did not always monitor whether differences were primarily due to ASD "per se", or to conditions overlapping with ASD, such as alexithymia and anxiety. Here, we collected fMRI data from 47 participants (22 ASD) viewing pictures depicting hands and feet of unknown others in painful, disgusting, or neutral situations. We computed brain activity for painful and disgusting stimuli (vs. neutral) in whole brain and in regions of interest among the brain areas typically activated during the perception of nociceptive stimuli. Group differences in brain activation disappeared when either alexithymia or anxiety - both elevated in the ASD group - were controlled for. Regression analyses indicated that the influence of symptoms was mainly shared between autistic symptomatology, alexithymia and anxiety or driven by unique contributions from alexithymia or anxiety. Our results suggest that affective empathy may be affected in ASD, but that this association is complex. The respective contribution of alexithymia and anxiety to decreased affective empathy of people with ASD may be due to the association of those psychiatric conditions with reduced motor resonance/Theory of Mind

    Hypersensitivity to low intensity fearful faces in autism when fixation is constrained to the eyes

    No full text
    Previous studies that showed decreased brain activation in people with autism spectrum disorder (ASD) viewing expressive faces did not control that participants looked in the eyes. This is problematic because ASD is characterized by abnormal attention to the eyes. Here, we collected fMRI data from 48 participants (27 ASD) viewing pictures of neutral faces and faces expressing anger, happiness, and fear at low and high intensity, with a fixation cross between the eyes. Group differences in whole brain activity were examined for expressive faces at high and low intensity versus neutral faces. Group differences in neural activity were also investigated in regions of interest within the social brain, including the amygdala and the ventromedial prefrontal cortex (vmPFC). In response to low intensity fearful faces, ASD participants showed increased activation in the social brain regions, and decreased functional coupling between the amygdala and the vmPFC. This oversensitivity to low intensity fear coupled with a lack of emotional regulation capacity could indicate an excitatory/inhibitory imbalance in their socio-affective processing system. This may result in social disengagement and avoidance of eye-contact to handle feelings of strong emotional reaction. Our results also demonstrate the importance of careful control of gaze when investigating emotional processing in ASD. Hum Brain Mapp 38:5943-5957, 2017. © 2017 Wiley Periodicals, Inc

    Effect of visual stimuli of pain on empathy brain network in people with and without Autism Spectrum Disorder.

    No full text
    The extent to which affective empathy is impaired in Autism Spectrum Disorder (ASD) remains unclear, as some-but not all-previous neuroimaging studies investigating empathy for pain in ASD have shown similar activation levels to those of neurotypicals individuals. These inconsistent results could be due to the use of different empathy-eliciting stimuli. While some studies used pictures of faces exhibiting a painful expression, others used pictures of limbs in painful situations. In this study, we used fMRI to compare activation in areas associated with empathy processing (empathy network) for these two types of stimuli in 31 participants (16 with ASD, 15 controls). We found a group difference in the inferior frontal gyrus (IFG) and the thalamus when participants viewed stimuli of limbs in painful situations, but not when they viewed face stimuli with a painful expression. Both groups of participants activated their empathy network more when viewing pictures of limbs in painful situations than when viewing pictures of faces with a painful expression; this increased activation for limbs versus faces was significantly enhanced in controls relative to ASD participants, especially in the secondary somatosensory cortex (SII). Our findings suggest that empathy defect of people with ASD is contingent upon the type of stimuli used, and may be related to the level of Mirror Neuron System involvement, as brain regions showing group differences (IFG, SII) underlie embodiment. We discuss the potential clinical implications of our findings in terms of developing interventions boosting the empathetic abilities of people with ASD
    corecore