31 research outputs found

    Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek\u27s disease

    Get PDF
    Background: Marek’s disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. However, the mechanisms of genetic resistance for MD are complex and not fully understood. MD-resistant line 63 and MD-susceptible line 72 are two highly inbred progenitor lines of White Leghorn. Recombinant Congenic Strains (RCS) were developed from these two lines, which show varied susceptibility to MD. Results: We investigated genetic structure and genomic signatures across the genome, including the line 63 and line 72, six RCSs, and two reciprocally crossed flocks between the lines 63 and 72 (F1 63 × 72 and F1 72 × 63) using Affymetrix® Axiom® HD 600 K genotyping array. We observed 18 chickens from RCS lines were specifically clustered into resistance sub-groups distributed around line 63. Additionally, homozygosity analysis was employed to explore potential genetic components related to MD resistance, while runs of homozygosity (ROH) are regions of the genome where the identical haplotypes are inherited from each parent. We found several genes including SIK, SOX1, LIG4, SIK1 and TNFSF13B were contained in ROH region identified in resistant group (line 63 and RCS), and these genes have been reported that are contribute to immunology and survival. Based on FST based population differential analysis, we also identified important genes related to cell death and anti-apoptosis, including AKT1, API5, CDH13, CFDP and USP15, which could be involved in divergent selection during inbreeding process. Conclusions: Our findings offer valuable insights for understanding the genetic mechanism of resistance to MD and the identified genes could be considered as candidate biomarkers in further evaluation

    Effect of a Traditional Chinese Medicine combined therapy on adolescent idiopathic scoliosis: a randomized controlled trial

    Get PDF
    AbstractObjectiveTo evaluate the effectiveness of a combined Traditional Chinese Medicine (TCM) therapy versus conventional treatment on adolescent idiopathic scoliosis.MethodsOne hundred twenty outpatients with mild and moderate adolescent idiopathic scoliosis were randomly divided into a TCM group (TCMG) and a brace group (CG). TCMG patients underwent Daoyin, Tuina, and acupotomology therapies. CG patients were treated with a Milwaukee brace. Each patient's Cobb angle was measured after 12 and 24 months of treatment, and pulmonary function was determined after 12 months of treatment. Average electromyogram (AEMG) ratio of the surface electromyogram was measured after 6 and 12 months of treatment and followed-up after 18 and 24 months.ResultsThe Cobb angle significantly decreased in both groups after 12 months of treatment compared with before treatment (P < 0.05). The percentages of original Cobb angle in TCMG and CG were 51.4% and 47.8% (P > 0.05) after 12 months and 62.5% and 34.7% (P < 0.05) after 24 months, respectively. Pulmonary function significantly improved after 12 months in TCMG (P < 0.05) but significantly decreased in CG (P < 0.05). The AEMG ratio was significantly lower (P < 0.01) and tended to remain at 1 after stopping treatment in TCMG, but increased in CG (P < 0.05).ConclusionTCM combined therapy can prevent the progression of scoliosis. The AEMG ratio is a promising index that could replace radiography in the evaluation of treatment effect and progression in scoliosis

    Multi-objective optimization for optimum tolerance synthesis with process and machine selection using a genetic algorithm

    Get PDF
    This paper presents a new approach to the tolerance synthesis of the component parts of assemblies by simultaneously optimizing three manufacturing parameters: manufacturing cost, including tolerance cost and quality loss cost; machining time; and machine overhead/idle time cost. A methodology has been developed using the Genetic Algorithm (GA) technique to solve this multi-objective optimization problem. The effectiveness of the proposed methodology has been demonstrated by solving a wheel mounting assembly problem consisting of five components, two subassemblies, two critical dimensions, two functional tolerances, and eight operations. Significant cost saving can be achieved by employing this methodology

    Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB1-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis?

    No full text
    Aflatoxin B1 (AFB1), a mycotoxin found in food and feed, is immunotoxic to animals and poses significant threat to the food industry and animal production. The primary target of AFB1 is the liver. To overcome aflatoxin toxicity, probiotic-mediated detoxification has been proposed. In the present study, to investigate the protective effects and molecular mechanisms of Lactobacillus bulgaricus or Lactobacillus rhamnosus against liver inflammatory responses to AFB1, mice were administered with AFB1 (300 &mu;g/kg) and/or Lactobacillus intragastrically for 8 weeks. AML12 cells were cultured and treated with AFB1, BAY 11-7082 (an NF-&kappa;B inhibitor), and different concentrations of L. bulgaricus or L. rhamnosus. The body weight, liver index, histopathological changes, biochemical indices, cytokines, cytotoxicity, and activation of the NF-&kappa;B signaling pathway were measured. AFB1 exposure caused changes in liver histopathology and biochemical functions, altered inflammatory response, and activated the NF-&kappa;B pathway. Supplementation of L. bulgaricus or L. rhamnosus significantly prevented AFB1-induced liver injury and alleviated histopathological changes and inflammatory response by decreasing NF-&kappa;B p65 expression. The results of in vitro experiments revealed that L. rhamnosus evidently protected against AFB1-induced inflammatory response and decreased NF-&kappa;B p65 expression when compared with L. bulgaricus. These findings indicated that AFB1 exposure can cause inflammatory response by inducing hepatic injury, and supplementation of L. bulgaricus or L. rhamnosus can produce significant protective effect against AFB1-induced liver damage and inflammatory response by regulating the activation of the NF-&kappa;B signaling pathway

    Corticosterone Excess-Mediated Mitochondrial Damage Induces Hippocampal Neuronal Autophagy in Mice Following Cold Exposure

    No full text
    Cold stress can induce autophagy mediated by excess corticosterone (CORT) in the hippocampus, but the internal mechanism induced by cold stress is not clear. In vivo, male and female C57BL/6 mice were stimulated in 4 &deg;C, 3 h per day for 1 week to build the model of cold sress. In vitro, hippocampal neuronal cell line (HT22) cells were incubated with or without mifepristone (RU486) for 1 h, then treated with 400 &mu;M cortisol (CORT) for 3 h. In vivo, autophagy was measured by western blotting. In vitro, monodansylcadaverine staining, western blotting, flow cytometry, transmission electron microscopy, and immunofluorescence were used to characterize the mechanism of autophagy induced by excess CORT. Autophagy was shown in mouse hippocampus tissues following cold exposure, including mitochondrial damage, autophagy, and 5&rsquo; AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway activation after CORT treatment. Autophagy did not rely on the glucocorticoid receptor. In addition, autophagy in male mice was more severe. The study would provide new insight into the mechanisms and the negative effect of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia

    Selection of Reliable Reference Genes for Real-time qRT-PCR Analysis of Zi Geese () Gene Expression

    No full text
    Zi geese (Anser anser domestica) belong to the white geese and are excellent layers with a superior feed-to-egg conversion ratio. Quantitative gene expression analysis, such as Real-time qRT-PCR, will provide a good understanding of ovarian function during egg-laying and consequently improve egg production. However, we still don’t know what reference genes in geese, which show stable expression, should be used for such quantitative analysis. In order to reveal such reference genes, the stability of seven genes were tested in five tissues of Zi geese. Methodology/Principal Findings: The relative transcription levels of genes encoding hypoxanthine guanine phosphoribosyl transferase 1 (HPRT1), β-actin (ACTB), β-tubulin (TUB), glyceraldehyde-3-phosphate-dehydrogenase (GADPH), succinate dehydrogenase flavoprotein (SDH), 28S rRNA (28S) and 18S rRNA (18S) have been quantified in heart, liver, kidney, muscle and ovary in Zi geese respectively at different developmental stages (1 d, 2, 4, 6 and 8 months). The expression stability of these genes was analyzed using geNorm, NormFinder and BestKeeper software. Conclusions: The expression of 28S in heart, GAPDH in liver and ovary, ACTB in kidney and HPRT1 in muscle are the most stable genes as identified by the three different analysis methods. Thus, these genes are recommended for use as candidate reference genes to compare mRNA transcription in various developmental stages of geese

    Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek’s disease

    Get PDF
    Abstract Background Marek’s disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. However, the mechanisms of genetic resistance for MD are complex and not fully understood. MD-resistant line 63 and MD-susceptible line 72 are two highly inbred progenitor lines of White Leghorn. Recombinant Congenic Strains (RCS) were developed from these two lines, which show varied susceptibility to MD. Results We investigated genetic structure and genomic signatures across the genome, including the line 63 and line 72, six RCSs, and two reciprocally crossed flocks between the lines 63 and 72 (F1 63 × 72 and F1 72 × 63) using Affymetrix® Axiom® HD 600 K genotyping array. We observed 18 chickens from RCS lines were specifically clustered into resistance sub-groups distributed around line 63. Additionally, homozygosity analysis was employed to explore potential genetic components related to MD resistance, while runs of homozygosity (ROH) are regions of the genome where the identical haplotypes are inherited from each parent. We found several genes including SIK, SOX1, LIG4, SIK1 and TNFSF13B were contained in ROH region identified in resistant group (line 63 and RCS), and these genes have been reported that are contribute to immunology and survival. Based on F ST based population differential analysis, we also identified important genes related to cell death and anti-apoptosis, including AKT1, API5, CDH13, CFDP and USP15, which could be involved in divergent selection during inbreeding process. Conclusions Our findings offer valuable insights for understanding the genetic mechanism of resistance to MD and the identified genes could be considered as candidate biomarkers in further evaluation

    UL36 Encoded by Marek’s Disease Virus Exhibits Linkage-Specific Deubiquitinase Activity

    No full text
    (1) Background: Deubiquitinase (DUB) regulates various important cellular processes via reversing the protein ubiquitination. The N-terminal fragment of a giant tegument protein, UL36, encoded by the Marek&rsquo;s disease (MD) virus (MDV), encompasses a putative DUB (UL36-DUB) and shares no homology with any known DUBs. The N-terminus 75 kDa fragment of UL36 exists in MD T lymphoma cells at a high level and participates in MDV pathogenicity. (2) Methods: To characterize deubiquitinating activity and substrate specificity of UL36-DUB, the UL36 N-terminal fragments, UL36(323), UL36(480), and mutants were prepared using the Bac-to-Bac system. The deubiquitinating activity and substrate specificity of these recombinant UL36-DUBs were analyzed using various ubiquitin (Ub) or ubiquitin-like (UbL) substrates and activity-based deubiquitinating enzyme probes. (3) Results: The results indicated that wild type UL36-DUBs show a different hydrolysis ability against varied types of ubiquitin chains. These wild type UL36-DUBs presented the highest activity to K11, K48, and K63 linkage Ub chains, weak activity to K6, K29, and K33 Ub chains, and no activity to K27 linkage Ub chain. UL36 has higher cleavage efficiency for K48 and K63 poly-ubiquitin than linear ubiquitin chain (M1-Ub4), but no activity on various ubiquitin-like modifiers. The mutation of C98 and H234 residues eliminated the deubiquitinating activity of UL36-DUB. D232A mutation impacted, but did not eliminated UL36(480) activity. The Ub-Br probe can bind to wild type UL36-DUB and mutants UL36(480)H234A and UL36(480)D232A, but not C98 mutants. These in vitro results suggested that the C98 and H234 are essential catalytic residues of UL36-DUB. UL36-DUB exhibited a strict substrate specificity. Inhibition assay revealed that UL36-DUB exhibits resistance to the Roche protease inhibitor cocktail and serine protease inhibitor, but not to the Solarbio protease inhibitor cocktail. (4) Conclusions: UL36-DUB exhibited a strict substrate preference, and the protocol developed in the current study for obtaining active UL36-DUB protein should promote the high-throughput screening of UL36 inhibitors and the study on the function of MDV-encoded UL36
    corecore